×

On a speed of solutions stabilization of the Cauchy problem for the Carleman equation with periodic initial data. (Russian. English summary) Zbl 1413.35302

Summary: This article explores a one-dimensional system of equations for the discrete model of a gas (Carleman system of equations). The Carleman system is the Boltzmann kinetic equation of a model one-dimensional gas consisting of two particles. For this model, momentum and energy are not retained. On the example of the Carleman model, the essence of the Boltzmann equation can be clearly seen. It describes a mixture of “competing” processes: relaxation and free movement. We prove the existence of a global solution of the Cauchy problem for the perturbation of the equilibrium state with periodic initial data. For the first time we calculate the stabilization speed to the equilibrium state (exponential stabilization).

MSC:

35L45 Initial value problems for first-order hyperbolic systems
35L60 First-order nonlinear hyperbolic equations
35Q20 Boltzmann equations

References:

[1] [1] Godunov S. K., Sultangazin U. M., “On discrete models of the kinetic Boltzmann equation”, Russian Math. Surveys, 26:3 (1971), 1–56 · Zbl 0219.35071 · doi:10.1070/RM1971v026n03ABEH003822
[2] [2] Broadwell T. E., “Study of rarefied shear flow by the discrete velocity method”, Journal of Fluid Mechanics, 19:3 (1971), 401–414 · Zbl 0151.41001 · doi:10.1017/S0022112064000817
[3] [3] Vedenyapin V., Sinitsyn A., Dulov E., Kinetic Boltzmann, Vlasov and related equations, Elsevier, Amsterdam, 2011, xiii+304 pp. · Zbl 1230.35004 · doi:10.1016/c2011-0-00134-5
[4] [4] Vasil’eva O. A., Dukhnovskii S. A., Radkevich E. V., “On the nature of local equilibrium in the Carleman and Godunov–Sultangazin equations”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3, CMFD, 60, PFUR, Moscow, 2016, 23–81 (In Russian)
[5] [5] Carleman T., Probèmes mathématiques dans la théorie cinetique des gaz, Publications Scientifiques de l’Institut Mittag–Leffler, 2, Almqvist & Wiksells, Uppsala, 1957, 112 pp. · Zbl 0077.23401
[6] [6] Boltzmann L., Lectures on Gas Theory, University of California Press, Berkeley, 1964, 490 pp.
[7] [7] Radkevich E. V., Vasil’eva O. A., Dukhnovskii S. A., “Local equilibrium of the Carleman equation”, Journal of Mathematical Sciences, 207:2 (2015), 296–323 · Zbl 1320.35194 · doi:10.1007/s10958-015-2373-x
[8] [8] Godunov S. K., “The problem of a generalized solution in the theory of quasi-linear equations and in gas dynamics”, Russian Math. Surveys, 17:3 (1962), 145–156 · Zbl 0107.20003 · doi:10.1070/RM1962v017n03ABEH004116
[9] [9] Il’in O. V., “Investigation of the existence of solutions and of the stability of the Carleman kinetic system”, Comput. Math. Math. Phys., 47:12 (2007), 1990–2001 · Zbl 07812369 · doi:10.1134/S0965542507120093
[10] [10] Vasil’eva O. A., Dukhnovskiy S. A., “Secularity Condition of the Kinetic Carleman System”, Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering], 2015, no. 7, 33–40 (In Russian) · doi:10.22227/1997-0935.2015.7.33-40
[11] [11] Buslaev V., Komech A., Kopylova E. A., Stuart D., “On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator”, Commun. Partial Differ. Equations, 33:4 (2008), 669–705 · Zbl 1185.35247 · doi:10.1080/03605300801970937
[12] [12] Komech A., Kopylova E. A., “On asymptotic stability of solitons in a nonlinear Schrödinger equation”, Commun. Pure Appl. Anal., 11:3 (2012), 1063–1079 · Zbl 1282.35352 · doi:10.3934/cpaa.2012.11.1063
[13] [13] Komech A., Kopylova E. A., Dispersion decay and scattering theory, John Willey and Sons, New Jersey, 2012, 175+xxvi pp. · Zbl 1317.35162 · doi:10.1002/9781118382868
[14] [14] Kopylova E. A., “On long-time decay for magnetic Schrödinger and Klein–Gordon equations”, Proc. Steklov Inst. Math., 278 (2012), 121–129 · Zbl 1301.35135 · doi:10.1134/S0081543812060120
[15] [15] Buslaev V. S., Perel’man G. S., “Scattering for the nonlinear Schrödinger equation: States close to a soliton”, St. Petersburg Math. J., 4:6 (1993), 1111–1142 · Zbl 0853.35112
[16] [16] Buslaev V. S., Perelman G. S., “On the stability of solitary waves for nonlinear Schrödinger equations”, Amer. Math. Soc. Transl., 164:22 (1995), 75–98 · Zbl 0841.35108
[17] [17] Buslaev V. S., Sulem C., “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Annales de l’Institut Henri Poincare (C) Non Linear Analysis, 20:3 (2003), 419–475, arXiv: · Zbl 1028.35139 · doi:10.1016/S0294-1449(02)00018-5
[18] [18] Vainberg B. R., Asimptoticheskie metody v uravneniiakh matematicheskoi fiziki [Asymptotic methods in equations of mathematical physics], Moscow Univ. Publ., Moscow, 1982, 294 pp. (In Russian) · Zbl 0518.35002
[19] [19] Vainberg B. R., “On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as \(t→ ∞\) of solutions of non-stationary problems”, Russian Math. Surveys, 30:2 (1975), 1–58 · Zbl 0308.35011 · doi:10.1070/RM1975v030n02ABEH001406
[20] [20] Vainberg B. R., “Behavior of the solutions of the Klein–Gordon equation for large values of time”, Tr. Mosk. Mat. Obs., 30, Moscow Univ. Publ., Moscow, 1974, 139–158 (In Russian) · Zbl 0313.35053
[21] [21] Morawetz C. S., Strauss W. A., “Decay and scattering of solutions of a nonlinear relativistic wave equation”, Commun. Pure Appl. Anal., 25:1 (1972), 1–31 · Zbl 0228.35055 · doi:10.1002/cpa.3160250103
[22] [22] Dukhnovskiy S. A., “On Estimates of the Linearized Operator of the Kinetic Carleman System”, Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering], 2016, no. 9, 7–14 (In Russian) · doi:10.22227/1997-0935.2016.9.7-14
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.