×

Schemes for bidirectional quantum teleportation via a hyper-entangled state. (English) Zbl 1412.81061

Summary: We propose the symmetry bidirectional quantum teleportation scheme by using a bi-photon Bell-class hyper-entangled state as quantum channel. Two distant parties, Alice and Bob can simultaneously teleport the desired one-qubit states each other via Bell-state measurement and appropriate unitary transformation. We also propose the asymmetry bidirectional quantum teleportation scheme by using a bi-photon Bell-class hyper-entangled state as quantum channel. Controlled not gate operation, Bell-state measurement and appropriate unitary transformation are included.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
81V80 Quantum optics
Full Text: DOI

References:

[1] Bennett, C. H., Brassard, G.: in Proc. IEEE Int. Conf. Comput. Syst. Signal Process., 175 (1984)
[2] Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661-663 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[3] Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A. 68, 042315 (2003) · doi:10.1103/PhysRevA.68.042315
[4] Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A. 70, 012311 (2004) · doi:10.1103/PhysRevA.70.012311
[5] Hwang, W.Y.: Quantum Key Distribution with High Loss: Toward Global Secure Communication. Phys. Rev. Lett. 91, 057901 (2003) · doi:10.1103/PhysRevLett.91.057901
[6] Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A. 78, 022321 (2008) · doi:10.1103/PhysRevA.78.022321
[7] Lo, H.K., Curty, M., Qi, B.: Measurement-Device-Independent Quantum Key Distribution. Phys. Rev. Lett. 108, 130503 (2012) · doi:10.1103/PhysRevLett.108.130503
[8] Hillery, M., Buˇzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59, 1829-1834 (1999) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[9] Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A. 59, 162-168 (1999) · doi:10.1103/PhysRevA.59.162
[10] Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A. 69, 052307 (2004) · doi:10.1103/PhysRevA.69.052307
[11] Deng, F. G., Zhou, H.Y., Long, G. L.: Circular quantum secret sharing. J. Phys. A Math. Gen. 39, 14089-14099 (2006) · Zbl 1106.81018
[12] Cleve, R., Gottesman, D., Lo, H.K.: How to Share a Quantum Secret. Phys. Rev. Lett. 83, 648-651 (1999) · doi:10.1103/PhysRevLett.83.648
[13] Qin, H.W., Zhu, X.H., Dai, Y.W.: (t, n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14, 2997-3004 (2015) · Zbl 1327.81167 · doi:10.1007/s11128-015-1037-6
[14] Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68, 042317 (2003) · doi:10.1103/PhysRevA.68.042317
[15] Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A. 69, 052319 (2004) · doi:10.1103/PhysRevA.69.052319
[16] Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A. 71, 044305 (2005) · doi:10.1103/PhysRevA.71.044305
[17] Liu, D., Chen, J.L., Jiang, W.: High-Capacity Quantum Secure Direct Communication with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom. Int. J. Theor. Phys. 51, 2923-2929 (2012) · Zbl 1261.81058 · doi:10.1007/s10773-012-1171-1
[18] Gu, B., Huang, Y.G., Fang, X., Chen, Y.L.: Robust Quantum Secure Communication with Spatial Quantum States of Single Photons. Int. J. Theor. Phys. 52, 4461-4469 (2013) · Zbl 1283.81048 · doi:10.1007/s10773-013-1765-2
[19] Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum Secure Direct Communication with Quantum Memory. Phys. Rev. Lett. 118, 220501 (2017) · doi:10.1103/PhysRevLett.118.220501
[20] Zhu, F., Zhang, W., Sheng, Y.B., Huang, Y.D.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519 (2017)
[21] Lo, H.K.: Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity. Phys. Rev. A. 62, 012313 (2000) · doi:10.1103/PhysRevA.62.012313
[22] Pati, A. K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)
[23] Bennett, C.H., Hayden, P., Leung, D.W., Shor, P.W., Winter, A.: Remote State Preparation. Phys. Rev. Lett. 87, 077902 (2001) · doi:10.1103/PhysRevLett.87.077902
[24] Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895-1899 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[25] Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A. 58, 4394-4400 (1998) · doi:10.1103/PhysRevA.58.4394
[26] Milburn, G.J., Braunstein, S.L.: Quantum teleportation with squeezed vacuum states. Phys. Rev. A. 60, 937-942 (1999) · doi:10.1103/PhysRevA.60.937
[27] Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A. 62, 022307 (2000) · doi:10.1103/PhysRevA.62.022307
[28] Kim, Y.H., Kulik, S.P., Shih, Y.H.: Quantum Teleportation of a Polarization State with a Complete Bell State Measurement. Phys. Rev. Lett. 86, 1370-1373 (2001) · doi:10.1103/PhysRevLett.86.1370
[29] Fattal, D., Diamanti, E., Inoue, K., Yamamoto, Y.: Quantum Teleportation with a Quantum Dot Single Photon Source. Phys. Rev. Lett. 92, 037904 (2004) · doi:10.1103/PhysRevLett.92.037904
[30] Sherson, J.F., Krauter, H., Olsson, R.K., Julsgaard, B., Hammerer, K., Cirac, I., Polzik, E.S.: Quantum teleportation between light and matter. Nature. 443, 557-560 (2006) · doi:10.1038/nature05136
[31] Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.M., Monroe, C.: Quantum Teleportation Between Distant Matter Qubits. Science. 323, 486-489 (2009) · doi:10.1126/science.1167209
[32] Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature. 518, 516-519 (2015) · doi:10.1038/nature14246
[33] Kwiat, P.G.: Hyper-entangled states. J. Mod. Opt. 44, 2173-2184 (1997) · Zbl 0947.81576 · doi:10.1080/09500349708231877
[34] Barreiro, J.T., Langford, N.K., Peters, N.A., Kwiat, P.G.: Generation of Hyperentangled Photon Pairs. Phys. Rev. Lett. 95, 260501 (2005) · doi:10.1103/PhysRevLett.95.260501
[35] Chen, J., Fan, J., Eisaman, M.D., Migdall, A.: Generation of high-flux hyperentangled photon pairs using a microstructure-fiber Sagnac interferometer. Phys. Rev. A. 77, 053812 (2008) · doi:10.1103/PhysRevA.77.053812
[36] Hu, B.L., Zhan, Y.B.: Generation of hyperentangled states between remote noninteracting atomic ions. Phys. Rev. A. 82, 054301 (2010) · doi:10.1103/PhysRevA.82.054301
[37] Shi, J., Yun, S.J., Bai, Y.F., Xu, P., Zhu, S.N.: Compact generation of polarization-frequency hyperentangled photon pairs by using quasi-phase-matched lithium niobate. Opt. Commun. 285, 5549-5553 (2012) · doi:10.1016/j.optcom.2012.07.118
[38] Kang, D.P., Helt, L.G., Zhukovsky, S.V., Torres, J.P., Sipe, J.E., Helmy, A.S.: Hyperentangled photon sources in semiconductor waveguides. Phys. Rev. A. 89, 023833 (2014)
[39] Liu, Q., Zhang, M.: Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators. Phys. Rev. A. 91, 062321 (2015) · doi:10.1103/PhysRevA.91.062321
[40] Hegazy, S.F., Obayya, S.S.A., Saleh, B.E.A.: Orthogonal quasi-phase-matched superlattice for generation of hyperentangled photons. Sci. Rep. 7, 4169 (2017) · doi:10.1038/s41598-017-03023-1
[41] He, G.Q., Zhu, C.R., Jiang, Y., Ren, J., Guo, Y., Jing, J.T.: Generation of path-polarization hyperentanglement using quasi-phase-matching in quasi-periodic nonlinear photonic crystal. Sci. Rep. 7, 4954 (2017) · doi:10.1038/s41598-017-05271-7
[42] Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46 (2017)
[43] Graham, T.M., Bernstein, H.J., Junge, M., Wei, T.C., Kwiat, P.G.: Superdense teleportation using hyperentangled photons. Nat. Commun. 6, 7185 (2015) · doi:10.1038/ncomms8185
[44] Wei, T.C., Barreiro, J.T., Kwiat, P.G.: Hyperentangled Bell-state analysis. Phys. Rev. A. 75, 060305(R) (2007)
[45] Sheng, Y. B., Deng, F. G., Long, G. L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010).
[46] Ren, B. C., Wei, H. R., Hua, M., Li, T., Deng, F. G.: Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express 20, 24664-24677 (2012),
[47] Wang, T.J.: Lu,Y., Long, G. L.: Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A. 86, 042337 (2012)
[48] Liu, Q., Wang, G.Y., Ai, Q., Zhang, M., Deng, F.G.: Complete nondestructive analysis of two-photon six-qubit hyperentangled Bell states assisted by cross-Kerr nonlinearity. Sci. Rep. 6, 22016 (2016) · doi:10.1038/srep22016
[49] Wang, G. Y., Ai, Q., Ren, B. C., Li, T., Deng, F. G.: Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Express 24, 28444-28458 (2016).
[50] Shi, J., Gong, Y.X., Xu, P., Zhu, S.N., Zhan, Y.B.: Quantum Secure Direct Communication by Using Three-Dimensional Hyperentanglement. Commun. Theor. Phys. 56, 831-836 (2011) · Zbl 1247.81099 · doi:10.1088/0253-6102/56/5/08
[51] Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B. 20, 100309 (2011)
[52] Wang, T. J., Li., T., Du, F. F., Deng, F. G.: High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement. Chin. Phys. Lett. 28, 040305 (2011).
[53] Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Quantum secure direct communication network with hyperentanglement. Chin. Phys. B. 23, 090309 (2014)
[54] Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci China Phys. Mech. 60, 120313 (2017) · doi:10.1007/s11433-017-9100-9
[55] Hong, W.Q.: Asymmetric Bidirectional Controlled Teleportation by using a Seven-qubit Entangled State. Int. J. Theor. Phys. 55, 384-387 (2016) · Zbl 1335.81041 · doi:10.1007/s10773-015-2671-6
[56] Li, Y.H., Nie, L.P., Li, X.L., Sang, M.H.: Asymmetric Bidirectional Controlled Teleportation by Using Six-qubit Cluster State. Int. J. Theor. Phys. 55, 3008-3016 (2016) · Zbl 1342.81043 · doi:10.1007/s10773-016-2933-y
[57] Yang, Y.Q., Zha, X.W. Yu, Y.: Asymmetric Bidirectional Controlled Teleportation via Seven-qubit Cluster State. Int. J. Theor. Phys. 55, 4197-4204 (2016) · Zbl 1358.81068
[58] Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and Asymmetric Quantum Controlled Teleportation. Int. J. Theor. Phys. 54, 1711-1719 (2015) · Zbl 1327.81114 · doi:10.1007/s10773-014-2372-6
[59] Chen, Y.: Bidirectional Controlled Quantum Teleportation by Using Five-Qubit Entangled State. Int. J. Theor. Phys. 53, 1454-1458 (2014) · Zbl 1304.81050 · doi:10.1007/s10773-013-1943-2
[60] Zhang, D., Zha, X.W., Li, W. Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Process. 14, 3835-3844 (2015) · Zbl 1327.81113
[61] Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929-945 (2016) · Zbl 1333.81080 · doi:10.1007/s11128-015-1194-7
[62] Yan, A.: Bidirectional Controlled Teleportation via Six-Qubit Cluster State. Int. J. Theor. Phys. 52, 3870-3873 (2013) · Zbl 1282.81044 · doi:10.1007/s10773-013-1694-0
[63] Kiktenko, E.O., Popov, A.A., Fedorov, A.K.: Bidirectional imperfect quantum teleportation with a single Bell state. Phys. Rev. A. 93, 062305 (2016) · doi:10.1103/PhysRevA.93.062305
[64] Sang, M.H.: Bidirectional Quantum Controlled Teleportation by using a Seven-qubit Entangled State. Int. J. Theor. Phys. 55, 380-383 (2016) · Zbl 1335.81046 · doi:10.1007/s10773-015-2670-7
[65] Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional Quantum Controlled Teleportation via a Maximally Seven-qubit Entangled State. Int. J. Theor. Phys. 53, 2697-2707 (2014) · Zbl 1308.81045 · doi:10.1007/s10773-014-2065-1
[66] Duan, Y.J., Zha, X.W.: Bidirectional Quantum Controlled Teleportation via a Six-Qubit Entangled State. Int. J. Theor. Phys. 53, 3780-3786 (2014) · Zbl 1307.81022 · doi:10.1007/s10773-014-2131-8
[67] Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional Quantum Controlled Teleportation via Five-Qubit Cluster State. Int. J. Theor. Phys. 52, 1740-1744 (2013) · doi:10.1007/s10773-012-1208-5
[68] Sang, M.H.: Bidirectional Quantum Teleportation by Using Five-qubit Cluster State. Int. J. Theor. Phys. 55, 1333-1335 (2016) · Zbl 1338.81108 · doi:10.1007/s10773-015-2774-0
[69] Heo, J., Hong, C.H., Lim, J.I., Yang, H.J.: Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity. Chin. Phys. B. 24, 050304 (2015) · Zbl 1327.81089
[70] Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15, 905-912 (2016) · Zbl 1333.81073 · doi:10.1007/s11128-015-1096-8
[71] Choudhury, B.S., Dhara, A.: A Bidirectional Teleportation Protocol for Arbitrary Two-qubit State Under the Supervision of a Third Party. Int. J. Theor. Phys. 55, 2275-2285 (2016) · Zbl 1338.81045 · doi:10.1007/s10773-015-2865-y
[72] Zhao, Z., Zhang, A.N., Chen, Y.A., Zhang, H., Du, J.F., Yang, T., Pan, J.W.: Experimental Demonstration of a Nondestructive Controlled-NOT Quantum Gate for Two Independent Photon Qubits. Phys. Rev. Lett. 94, 030501 (2005) · doi:10.1103/PhysRevLett.94.030501
[73] Bao, X.H., Chen, T.Y., Zhang, Q., Yang, J., Zhang, H., Yang, T., Pan, J.W.: Optical Nondestructive Controlled-NOT Gate without Using Entangled Photons. Phys. Rev. Lett. 98, 170502 (2007) · doi:10.1103/PhysRevLett.98.170502
[74] Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013) · doi:10.1088/1612-2011/10/9/095202
[75] Imoto, N.H., Haus, A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A. 32, 2287-2292 (1985) · doi:10.1103/PhysRevA.32.2287
[76] Nemoto, K., Munro, W.J.: Nearly Deterministic Linear Optical Controlled-NOT Gate. Phys. Rev. Lett. 93, 250502 (2004) · doi:10.1103/PhysRevLett.93.250502
[77] Sheng, Y.B., Deng, D.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A. 77, 042308 (2008) · doi:10.1103/PhysRevA.77.042308
[78] Liu, H.J., Xia, Y., Song, J.: Efficient hyperentanglement concentration for N-particle Greenberger-Horne-Zeilinger state assisted by weak cross-Kerr nonlinearity. Quantum Inf. Process. 15, 2033-2052 (2016) · Zbl 1338.81062 · doi:10.1007/s11128-016-1258-3
[79] Li, T., Wang, G.Y., Deng, F.G., Long, G.L.: Deterministic error correction for nonlocal spatial-polarization hyperentanglement. Sci. Rep. 6, 20677 (2016) · doi:10.1038/srep20677
[80] Gao, C.Y., Wang, G.Y., Zhang, H., Deng, F.G.: Multi-photon self-error-correction hyperentanglement distribution over arbitrary collective-noise channels. Quantum Inf. Process. 16, 11 (2017) · Zbl 1398.81039 · doi:10.1007/s11128-016-1482-x
[81] Gao, C.Y., Wang, G.Y., Alzahrani, F., Hobiny, A., Deng, F.G.: Robust spatial-polarization hyperentanglement distribution of two-photon systems against collective noise. J. Phys. B Atomic Mol. Phys. 50, 055502 (2017) · doi:10.1088/1361-6455/aa5854
[82] Jiang, Y.X., Guo, P.L., Gao, C.Y., Wang, H.B., Alzahrani, F., Hobiny, A., Deng, F.G.: Self-error-rejecting photonic qubit transmission in polarization-spatial modes with linear optical elements. Sci. China-Phys. Mech. Astron. 60 (12), 120312 (2017)
[83] Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A. 88, 012302 (2013) · doi:10.1103/PhysRevA.88.012302
[84] Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express. 22, 6547-6561 (2014) · doi:10.1364/OE.22.006547
[85] Ren, B.C., Wang, H., Alzahrani, F., Hobiny, A., Deng, F.G.: Hyperentanglement concentration of nonlocal two-photon six-qubit systems with linear optics. Ann. Phys. 385, 86-94 (2017) · Zbl 1372.81024 · doi:10.1016/j.aop.2017.07.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.