×

Quantized massive-collective gauge fields and anomalous properties in high-\(T_{\mathrm c}\) cuprates. (English) Zbl 1410.82038

In the path-integral method, the authors introduce the spin parameter, the Fermi field of a hole, the non-abelian \(\mathrm{SO}(3)\) gauge fields around doped holes as collective modes and the Higgs field in high-\(T_c\) cuprate superconductors. Since the effective interaction between two holes is asymptotic free, they introduce the \(\mathrm{SO}(3)\) Yang-Mills fields mentioned above. After the spontaneous \(\mathrm{SO}(3)\) symmetry breaking, the authors study the effect of the quantized massive-collective gauge fields. They derive the restoration temperature to the symmetry \(\mathrm{SO}(3)\); the spontaneously broken symmetry is restored when the temperature is greater than the restoration temperature. They naturally explain anomalous properties of the pseudogap in high-\(T_c\) cuprate superconductors. They derive the evolution of Fermi arc by temperature increase and by doping increase, and explain the temperature-linear dependence of the electrical resistivity in the strange metal phase. Their formula satisfies both renormalization and unitalization conditions.

MSC:

82D55 Statistical mechanics of superconductors
81T13 Yang-Mills and other gauge theories in quantum field theory
Full Text: DOI

References:

[1] Campuzano, JC; etal., Electronic spectra and their relation to the (\(π \), \(π \)) collective mode in high-\(T_{\rm c}\) superconductors, Phys. Rev. Lett., 83, 3709, (1999) · doi:10.1103/PhysRevLett.83.3709
[2] Miyakawa, N; etal., Strong dependence of the superconducting gap on oxygen doping from tunneling measurements on bi\(_2\)sr\(_2\)cacu\(_2\)O\(_{8δ }\), Phys. Rev. Lett., 80, 157, (1998) · doi:10.1103/PhysRevLett.80.157
[3] Norman, MR; etal., Destruction of the Fermi surface in underdoped high-\(T_{\rm c}\) superconductors, Nature, 329, 157, (1998) · doi:10.1038/32366
[4] Anderson, PW, The resonating valence bond state in la\(_2\)cuo\(_4\) and superconductivity, Science, 235, 1196, (1987) · doi:10.1126/science.235.4793.1196
[5] Emery, VJ; Kivelson, SA, Importance of phase fluctuations in superconductors with small superfluid density, Nature, 374, 434, (1995) · doi:10.1038/374434a0
[6] Chakravarty, S; etal., Hidden order in the cuprates, Phys. Rev. B, 63, 094503, (2001) · doi:10.1103/PhysRevB.63.094503
[7] Hanaguri, T; etal., A ‘checkerboard’ electronic crystal state in lightly hole-doped ca\(_{2-x}\)na\(_x\)cuo\(_2\)cl\(_2\), Nature, 430, 1001, (2004) · doi:10.1038/nature02861
[8] Wise, WD; etal., Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy, Nat. Phys., 4, 696, (2008) · doi:10.1038/nphys1021
[9] Kamimura, H; Hamada, T; Ushio, H, Theoretical exploration of electronic structure in cuprates from electronic entropy, Phys. Rev. B, 66, 054504, (2002) · doi:10.1103/PhysRevB.66.054504
[10] Prelovŝek, P; Ramŝak, A, Spectral functions, Fermi surface, and pseudogap in the \(t-J\) model, Phys. Rev. B, 65, 174529, (2002) · doi:10.1103/PhysRevB.65.174529
[11] Tanaka, K; etal., Distinct Fermi-momentum-dependent energy gaps in deeply underdoped bi2212, Science, 314, 1910, (2006) · doi:10.1126/science.1133411
[12] Lee, WS; etal., Abrupt onset of a second energy gap at the superconducting transition of underdoped bi2212, Nature, 450, 81, (2007) · doi:10.1038/nature06219
[13] Kanazawa, I, Gauge field and high-\(T_{\rm c}\) superconductivity, Phys. C, 185-189, 1703, (1991) · doi:10.1016/0921-4534(91)90978-8
[14] Kanazawa, I, Quantized massive collective excitations, short-range spin fluctuations and high-\(T_{\rm c}\) superconductivity, J. Phys. A, 36, 9371, (2003) · Zbl 1043.81779 · doi:10.1088/0305-4470/36/35/321
[15] Kanazawa, I, Anomalous properties and quantized massive gauge fields in high-\(T_{\rm c}\) cuprates, J. Phys. Conf. Ser., 108, 012013, (2008) · Zbl 1410.82038 · doi:10.1088/1742-6596/108/1/012013
[16] Kanazawa, I, Anomalous transport properties and T-evolution of Fermi arc in underdoped cuprates, J. Phys. Soc. Jpn., 74, 200, (2005) · doi:10.1143/JPSJS.74S.200
[17] Kanazawa, I, Temperature dependence of anomalous transport properties and restoration of symmetry breaking in underdoped cuprates, J. Phys. Chem. Solids, 66, 1388, (2005) · doi:10.1016/j.jpcs.2005.05.015
[18] Kanazawa, I, The evolution mechanism of Fermi arc with increasing of hole-doping in high-\(T_{\rm c}\) cuprates, Phys. C, 470, s183, (2010) · doi:10.1016/j.physc.2009.11.114
[19] Kanazawa, I; Sasaki, T, Quantized massive collective modes and temperature dependence of the energy distribution curves in high-\(T_{\rm c}\) cuprates, JPS Conf. Proc., 3, 015016, (2014)
[20] Kanazawa, I; Sasaki, T, Quantized massive collective modes and massive spin fluctuations in high-\(T_{\rm c}\) cuprates, Phys. Scr., T165, 014038, (2015) · doi:10.1088/0031-8949/2015/T165/014038
[21] Dipasupil, RM; etal., Energy gap evolution in the tunneling spectra of bi\(_2\)sr\(_2\)cacu\(_2\)O\(_{8+δ }\), J. Phys. Soc. Jpn., 71, 1535, (2002) · doi:10.1143/JPSJ.71.1535
[22] Affleck, I; etal., SU(2) gauge symmetry of the large-\(U\) limit of the Hubbard model, Phys. Rev. B, 38, 745, (1988) · doi:10.1103/PhysRevB.38.745
[23] Kadanoff, LP; Ceva, H, Determination of an operator algebra for the two-dimensional Ising model, Phys. Rev. B, 3, 3918, (1971) · doi:10.1103/PhysRevB.3.3918
[24] Hooft, G, On the phase transition towards permanent quark confinement, Nucl. Phys. B, 138, 1, (1978) · doi:10.1016/0550-3213(78)90153-0
[25] Becchi, C; Rouet, A; Stora, R, Renormalization of the abelian Higgs-kibble model, Commun. Math. Phys., 42, 127, (1975) · doi:10.1007/BF01614158
[26] Kugo, T; Ojima, I, Local covariant operator formalism of non-abelian gauge theories and quark confinement problem, Prog. Theor. Phys. Suppl., 66, 1, (1979) · doi:10.1143/PTPS.66.1
[27] Yazdani, A, Visualizing pair formation on the atomic scale and the search for the mechanism of superconductivity in high-\(T_{\rm c}\) cuprates, J. Phys. Condensed Matter, 21, 164214, (2009) · doi:10.1088/0953-8984/21/16/164214
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.