×

The spinor genus of the integral trace. (English) Zbl 1410.11031

Summary: Let \( K\) be a number field of degree at least 3. In this article we show that the genus of the integral trace form of \( K\) contains only one spinor genus. Additionally we show that exactly 43% (resp. 29%, resp. 58%) of quadratic (resp. real quadratic, resp. imaginary quadratic) fields have the same property.

MSC:

11E12 Quadratic forms over global rings and fields
11R04 Algebraic numbers; rings of algebraic integers
11S99 Algebraic number theory: local fields

References:

[1] Bayer-Fluckiger, E., Galois cohomology and the trace form, Jahresber. Deutsch. Math.-Verein., 96, 2, 35-55 (1994) · Zbl 0804.12003
[2] Bayer-Fluckiger, E.; Lenstra, H. W., Jr., Forms in odd degree extensions and self-dual normal bases, Amer. J. Math., 112, 3, 359-373 (1990) · Zbl 0729.12006 · doi:10.2307/2374746
[3] Bhargava, Manjul; Shnidman, Ariel, On the number of cubic orders of bounded discriminant having automorphism group \(C_3\), and related problems, Algebra Number Theory, 8, 1, 53-88 (2014) · Zbl 1298.11102 · doi:10.2140/ant.2014.8.53
[4] J. W. S. Cassels, Rational quadratic forms, Dover Publications, Inc., Mineola, NY, 2008. · Zbl 0496.10008
[5] Cox, David A., Primes of the form \(x^2 + ny^2\), A Wiley-Interscience Publication, xiv+351 pp. (1989), John Wiley & Sons, Inc., New York · Zbl 0701.11001
[6] Conner, P. E.; Perlis, R., A survey of trace forms of algebraic number fields, Series in Pure Mathematics 2, ix+316 pp. (1984), World Scientific Publishing Co., Singapore · Zbl 0551.10017 · doi:10.1142/0066
[7] Conway, J. H.; Sloane, N. J. A., Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 290, lxxiv+703 pp. (1999), Springer-Verlag, New York · Zbl 0915.52003 · doi:10.1007/978-1-4757-6568-7
[8] Conner, P. E.; Yui, Noriko, The additive characters of the Witt ring of an algebraic number field, Canad. J. Math., 40, 3, 546-588 (1988) · Zbl 0647.12006 · doi:10.4153/CJM-1988-024-x
[9] Eichler, Martin, Quadratische Formen und orthogonale Gruppen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Ber\`“ucksichtigung der Anwendungsgebiete. Band LXIII, xii+220 pp. (1952), Springer-Verlag, Berlin-G\'”ottingen-Heidelberg · Zbl 0049.31106
[10] Earnest, A. G.; Hsia, J. S., Spinor norms of local integral rotations. II, Pacific J. Math., 61, 1, 71-86 (1975) · Zbl 0334.10012
[11] Erez, B.; Morales, J.; Perlis, R., Sur le genre de la forme trace. S\'eminaire de Th\'eorie des Nombres, 1987-1988 (Talence, 1987-1988) (1988), Univ. Bordeaux I, Talence, Exp.No.18, 15 pp. · Zbl 0688.10020
[12] Epkenhans, Martin, On trace forms of algebraic number fields, Arch. Math. (Basel), 60, 6, 527-529 (1993) · Zbl 0777.11009 · doi:10.1007/BF01236076
[13] Estes, Dennis R.; Pall, Gordon, Spinor genera of binary quadratic forms, J. Number Theory, 5, 421-432 (1973) · Zbl 0268.10010
[14] Fouvry, {\'E}tienne; Kl{\`“u}ners, J{\'”u}rgen, On the 4-rank of class groups of quadratic number fields, Invent. Math., 167, 3, 455-513 (2007) · Zbl 1126.11062 · doi:10.1007/s00222-006-0021-2
[15] Fouvry, {\'E}tienne; Kl{\`“u}ners, J{\'”u}rgen, Weighted distribution of the 4-rank of class groups and applications, Int. Math. Res. Not. IMRN, 16, 3618-3656 (2011) · Zbl 1251.11076
[16] Gallagher, Vincent P., Local trace forms, Linear and Multilinear Algebra, 7, 2, 167-174 (1979) · Zbl 0421.10014 · doi:10.1080/03081087908817274
[17] J. Jones, Number Fields Database, http://hobbes.la.asu.edu/NFDB/ · JFM 42.0088.02
[18] Knus, Max-Albert; Merkurjev, Alexander; Rost, Markus; Tignol, Jean-Pierre, The book of involutions, American Mathematical Society Colloquium Publications 44, xxii+593 pp. (1998), American Mathematical Society, Providence, RI · Zbl 0955.16001
[19] Kr{\"u}skemper, Martin, Algebraic number field extensions with prescribed trace form, J. Number Theory, 40, 1, 120-124 (1992) · Zbl 0762.11014 · doi:10.1016/0022-314X(92)90032-K
[20] Mantilla-Soler, Guillermo, Integral trace forms associated to cubic extensions, Algebra Number Theory, 4, 6, 681-699 (2010) · Zbl 1201.11100 · doi:10.2140/ant.2010.4.681
[21] Mantilla-Soler, Guillermo, A space of weight 1 modular forms attached to totally real cubic number fields. Trends in number theory, Contemp. Math. 649, 131-137 (2015), Amer. Math. Soc., Providence, RI · Zbl 1370.11121 · doi:10.1090/conm/649/13023
[22] G. Mantilla-Soler, The genus of the integral trace, author’s webpage. · Zbl 1410.11031
[23] Maurer, Donald, The trace-form of an algebraic number field, J. Number Theory, 5, 379-384 (1973) · Zbl 0275.12011
[24] Min{\'a}{\v{c}}, J.; Reichstein, Z., Trace forms of Galois extensions in the presence of a fourth root of unity, Int. Math. Res. Not., 8, 389-410 (2004) · Zbl 1081.12001 · doi:10.1155/S1073792804130456
[25] J. Neukirch, Algebraische Zahlentheorie, Springer-Verlag, Berlin-Heidelberg, 2007.
[26] O’Meara, O. T., Introduction to quadratic forms, xi+342 pp. (1971), Springer-Verlag, New York-Heidelberg · Zbl 0207.05304
[27] Pickett, Erik Jarl, Explicit construction of self-dual integral normal bases for the square-root of the inverse different, J. Number Theory, 129, 7, 1773-1785 (2009) · Zbl 1185.11074 · doi:10.1016/j.jnt.2009.02.012
[28] Serre, Jean-Pierre, L’invariant de Witt de la forme \({\rm Tr}(x^2)\), Comment. Math. Helv., 59, 4, 651-676 (1984) · Zbl 0565.12014 · doi:10.1007/BF02566371
[29] Serre, Jean-Pierre, Local fields, Graduate Texts in Mathematics 67, viii+241 pp. (1979), Springer-Verlag, New York-Berlin · Zbl 0423.12016
[30] Soundararajan, K., Divisibility of class numbers of imaginary quadratic fields, J. London Math. Soc. (2), 61, 3, 681-690 (2000) · Zbl 1018.11054 · doi:10.1112/S0024610700008887
[31] Taussky, Olga, The discriminant matrices of an algebraic number field, J. London Math. Soc., 43, 152-154 (1968) · Zbl 0155.37903
[32] Watson, G. L., Integral quadratic forms, Cambridge Tracts in Mathematics and Mathematical Physics, No. 51, xii+143 pp. (1960), Cambridge University Press, New York · Zbl 0090.03103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.