×

Superconvergence of least-squares methods for a coupled system of elliptic equations. (English) Zbl 1409.65094

Summary: We present a numerical method for solving a coupled system of elliptic partial differential equations (PDEs). Our method is based on the least-squares (LS) approach. We develop ellipticity estimates and error bounds for the method. The main idea of the error estimates is the establishment of supercloseness of the LS solutions, and solutions of the mixed finite element methods and Ritz projections. Using the supercloseness property, we obtain \(L_2\)-norm error estimates, and the error estimates for each quantity of interest show different convergence behaviors depending on the choice of the approximation spaces. Moreover, we present maximum norm error estimates and construct asymptotically exact a posteriori error estimators under mild conditions. Application to optimal control problems is briefly considered.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J57 Boundary value problems for second-order elliptic systems
Full Text: DOI

References:

[1] Bochev, P. B.; Gunzburger, M. D., A locally conservative least-squares method for Darcy flows, Comm. Numer. Methods Engrg., 24, 97-110 (2008) · Zbl 1191.76066
[2] Bramble, J. H.; Lazarov, R. D.; Pasciak, J. E., A least-squares approach based on a discrete minus one inner product for first order systems, Math. Comp., 66, 935-955 (1997) · Zbl 0870.65104
[3] Cai, Z.; Ku, J., The \(L^2\) norm error estimates for the div least-squares methods, SIAM J. Numer. Anal., 44, 4, 1721-1734 (2006) · Zbl 1138.76053
[4] Cai, Z.; Ku, J., Optimal error estimate for the div least-squares method with data \(f \in L^2\) and application to nonlinear problems, SIAM J. Numer. Anal., 47, 6, 4098-4111 (2010) · Zbl 1275.65079
[5] Cai, Z.; Lazarov, R.; Manteuffel, T. A.; McCormick, S. F., First-order system least squares for second-order partial differential equations:part I, SIAM J. Numer. Anal., 31, 1785-1799 (1994) · Zbl 0813.65119
[6] Ku, J., Sharp \(L_2\)-norm error estimates for first-order div least-squares methods, SIAM J. Numer. Anal., 49, 2, 755-769 (2011) · Zbl 1228.65215
[7] Ku, J., Weak coupling of solutions of least-squares method, Math. Comp., 77, 1323-1332 (2008) · Zbl 1195.65172
[8] Pehlivanov, A. I.; Carey, G. F.; Lazarov, R. D., Least-squares mixed finite element methods for second-order elliptic problems, SIAM J. Numer. Anal., 31, 1368-1377 (1994) · Zbl 0806.65108
[9] Babuska, I., The finite element method with Lagrange multipliers, Numer. Math., 20, 179-192 (1973) · Zbl 0258.65108
[10] Brezzi, F., On existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO Anal. Numer., 21, 581-604 (1987)
[11] Bochev, P. B.; Gunzburger, M. D., Least-squares finite element methods for optimality systems arising in optimization and control problems, SIAM J. Numer. Anal., 43, 6, 2517-2543 (2006) · Zbl 1112.65062
[12] Ryu, S.; Lee, H.; Kim, S., First-order system least-squares methods for an optimal control problem by the Stokes flow, SIAM J. Numer. Anal., 47, 2, 1524-1545 (2009) · Zbl 1404.49019
[13] Brandts, J.; Chen, Y.; Yang, J., A note on least-squares mised finite elements in relation to standard and mised finite elements, IMA J. Numer. Anal., 26, 4, 779-789 (2006) · Zbl 1106.65102
[14] Ku, J., Supercloseness of the mixed finite element method for the primary function on unstructured meshes and its applications, BIT Numer. Math., 54, 1087-1097 (2014) · Zbl 1308.65199
[15] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (2008), Springer: Springer New York · Zbl 1135.65042
[16] Ciarlet, P. G., The Finite Element Methods for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0383.65058
[17] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Spring-Verlag: Spring-Verlag Berlin · Zbl 0788.73002
[18] Raviart, P. A.; Thomas, J. M., A mixed finite element method for second order elliptic problems, (Mathematical Aspects of the Finite Element Method. Mathematical Aspects of the Finite Element Method, Lectures Notes in Math., vol. 606 (1977), Spring-Verlag: Spring-Verlag New York) · Zbl 0362.65089
[19] Brezzi, J.; Douglas Jr., F.; Marini, L., Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47, 217-235 (1985) · Zbl 0599.65072
[20] Demlow, A., Suboptimal and optimal convergence in mixed finite element methods, SIAM J. Numer. Anal., 39, 6, 1938-1953 (2002) · Zbl 1013.65118
[21] Durán, R. G., Error analysis in \(L^p, 1 \leq p \leq \infty \), for mixed finite element methods for linear and quasi-linear elliptic problems, RAIRO Modél. Math. Anal. Numér., 22, 371-387 (1988) · Zbl 0698.65060
[22] Gastaldi, L.; Nochetto, R. H., Sharp maximum norm error estimates for general mixed finte element approximations to second order elliptic equations, RAIRO Modél. Math. Anal. Numér., 23, 103-128 (1989) · Zbl 0673.65060
[23] Schatz, A. H.; Wahlbin, L. B., on the quasi-optimality in \(L_\infty\) of the \(H_0^1\) projection into finite element spaces, Math. Comp., 38, 1-21 (1982) · Zbl 0483.65006
[24] Thomée, Vidar, Galerkin Finite Element Methods for Parabolic Problems (2006), Springer · Zbl 1105.65102
[25] M. Ainsworth, J.T. Oden, A posteriori error estimation in finite element analysis, 2000.; M. Ainsworth, J.T. Oden, A posteriori error estimation in finite element analysis, 2000. · Zbl 1008.65076
[26] Schatz, A. H.; Wahlbin, L. B., Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes, Part II: The piecewise linear case, Math. Comp., 73, 517-523 (2003) · Zbl 1038.65115
[27] Hoffmann, W.; Schatz, A. H.; Wahlbin, L. B.; Wittum, G., Asymptotically exact a posteriori estimators for the pointwise gradient error on each element in irregular meshes, Part I: a smooth problem and globally quasi-uniform meshes, Math. Comput., 70, 897-909 (2001) · Zbl 0969.65099
[28] Fredi Tröltzsch, Optimal Control of Partial Differential Equations: Theory. Methods and Applications, Vol. 112, 2010, American Mathematical Society.; Fredi Tröltzsch, Optimal Control of Partial Differential Equations: Theory. Methods and Applications, Vol. 112, 2010, American Mathematical Society. · Zbl 1195.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.