×

Positive ground state solutions for fractional Kirchhoff type equations with critical growth. (English) Zbl 1407.35212

Summary: We study the existence of positive ground state solutions for the following fractional Kirchhoff type equation \[ \begin{cases} \left(a+b \int_{\mathbb R^3}|(-\Delta)^{\frac{s}{2}}u|^2dx\right) (-\Delta)^su+V(x)u=\mu|u|^{p-2}u+|u|^{2^\ast_s-2}u \;x \in \mathbb R^3 \\ u \in H^S(\mathbb R^3), \end{cases} \] where \(a,b> 0\) are constants, \(\mu\) is a positive parameter, \(2<p<2_S^\ast\) with \(2_S^\ast = \frac{6}{3-2s}\) and \(s\in (0,1)\). Under suitable assumptions on \(V(x)\), by using a monotonicity trick and a global compactness principle, we prove that the equation admits a positive ground state solution if \(s \in (\frac{3}{4},1) \) and \(\mu> 0\) large enough.

MSC:

35R11 Fractional partial differential equations
35A15 Variational methods applied to PDEs
35B33 Critical exponents in context of PDEs
Full Text: DOI

References:

[1] FiscellaA, ValdinociE. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 2014;94:156‐170. · Zbl 1283.35156
[2] KirchhoffG. Mechanik. Leipzig: Teubner; 1883.
[3] ArosioA, PanizziS. On the well‐posedness of the Kirchhoff string. Trans Amer Math Soc. 1996;348:305‐330. · Zbl 0858.35083
[4] D’AnconaP, SpagnoloS. Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent Math. 1992;108:247‐262. · Zbl 0785.35067
[5] HeX, ZouW. Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(\mathbb{R}^3\). J Differ Equations. 2012;2:1813‐1834. · Zbl 1235.35093
[6] LiG, YeH. Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \(\mathbb{R}^3\). J Differ Equations. 2014;257:566‐600. · Zbl 1290.35051
[7] GuoZ. Ground states for Kirchhoff equations without compact condition. J Differ Equations. 2015;259:2884‐2902. · Zbl 1319.35018
[8] HeY, LiG. Standing waves for a class of Kirchhoff type problems in \(\mathbb{R}^3\) involving critical Sobolev exponents. Calc Var Partial Differ Equations. 2015;54:3067‐3106. · Zbl 1328.35046
[9] DengY, PengS, ShuaiW. Existence and asympototic behavior of nodal solutions for the Kirchhoff‐type problems in \(\mathbb{R}^3\). J Funct Anal. 2015;269:3500‐3527. · Zbl 1343.35081
[10] HeX, ZouW. Ground states for nonlinear Kirchhoff equations with critical growth. Ann Mat Pura Appl. 2014;193(4):473‐500. · Zbl 1300.35016
[11] LiG, YeH. Existence of positive solutions for nonlinear Kirchhoff type problems in \(\mathbb{R}^3\) with critical Sobolev exponent. Math Methods Appl Sci. 2014;37:2570‐2584. · Zbl 1303.35009
[12] LüD, XiaoJ. Ground state solutions for a coupled Kirchhoff‐type system. Math Methods Appl Sci. 2015;38:4931‐4948. · Zbl 1335.35056
[13] TangX, ChenS. Ground state solutions of Nehari‐Pohozaev type for Kirchhoff‐type problems with general potentials. Calc Var Partial Differ Equations. 2017;56:25. · Zbl 1376.35056
[14] BucurC, ValdinociE. Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, 20. Cham: Springer; 2016. Unione Matematica Italiana, Bologna. · Zbl 1377.35002
[15] DávilaJ, del PinoM, DipierroS, ValdinociE. Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum. Anal PDE. 2015;8:1165‐1235. · Zbl 1366.35215
[16] FiscellaA, PucciP. Kirchhoff‐Hardy fractional problems with lack of compactness. Adv Nonlinear Stud. 2017;17:429‐456. · Zbl 1375.35180
[17] AutuoriG, FiscellaA, PucciP. Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 2015;125:699‐714. · Zbl 1323.35015
[18] NyamoradiN. Existence of three solutions for Kirchhoff nonlocal operators of elliptic type. Math Commun. 2013;18:489‐502. · Zbl 1279.49007
[19] XiangM, ZhangB, FerraraM. Existence of solutions for Kirchhoff type problem involving the non‐local fractional p‐Laplacian. J Math Anal Appl. 2015;424:1021‐1041. · Zbl 1317.35286
[20] PucciP, SaldiS. Critical stationary Kirchhoff equations in \(\mathbb{R}^N\) involving nonlocal operators. Rev Mat Iberoam. 2016;32:1‐22. · Zbl 1405.35045
[21] AmbrosioV, IserniaT. A multiplicity result for a fractional Kirchhoff equation in \(\mathbb{R}^N\) with a general nonlinearity. Commun Contemp Math. 2017;20:1750054. · Zbl 1394.35544
[22] XiangM, ZhangB, ZhangX. A critical Kirchhoff type problem involving the fractional p‐Laplacian in \(\mathbb{R}^N\). Complex Var Elliptic Equ. 2018;63:652‐670. · Zbl 1402.35308
[23] AutuoriG, PucciP. Elliptic problems involving the fractional Laplacian in \(\mathbb{R}^N\). J Differ Equations. 2013;255:2340‐2362. · Zbl 1284.35171
[24] CaffarelliL, SalsaS, SilvestreL. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent Math. 2008;171:425‐461. · Zbl 1148.35097
[25] ChangX, WangZ. Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity. 2013;26:479‐494. · Zbl 1276.35080
[26] DengY, ShuaiW. Sign‐changing solutions for non‐local elliptic equations involving the fractional Laplacian. Adv Differ Equations. 2018;23:109‐134. · Zbl 1386.35087
[27] DipierroS, MedinaM, ValdinociE. Fractional Elliptic Problems with Critical Growth in the Whole of \(\mathbb{R}^n\), Appunti Scuola Normale Superiore di Pisa (Nuova Serie), vol. 15. Pisa: Edizioni della Normale; 2017. · Zbl 1375.49001
[28] FiscellaA, PucciP. p‐fractional Kirchhoff equations involving critical nonlinearities. Nonlinear Anal Real World Appl. 2017;35:350‐378. · Zbl 1372.35335
[29] PucciP, XiangM, ZhangB. Multiple solutions for nonhomogeneous Schrödinger‐Kirchhoff type equations involving the fractional p‐Laplacian in \(\mathbb{R}^N\). Calc Var Partial Differ Equations. 2015;54:2785‐2806. · Zbl 1329.35338
[30] SecchiS. Ground state solutions for nonlinear fractional Schrödinger equations in \(\mathbb{R}^N\). J Math Phys. 2013;54:17. · Zbl 1281.81034
[31] XiangM, WangF. Fractional Schrödinger‐Poisson‐Kirchhoff type systems involving critical nonlinearities. Nonlinear Anal. 2017;164:1‐26. · Zbl 1374.35430
[32] JeanjeanL. On the existence of bounded Palais‐Smale sequences and application to a Landesman‐Lazer‐type problem set on \(\mathbb{R}^N\). Proc Roy Soc Edinburgh Sect A. 1999;129:787‐809. · Zbl 0935.35044
[33] JeanjeanL. Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 1997;28:1633‐1659. · Zbl 0877.35091
[34] CotsiolisA, TavoularisNK. Best constants for Sobolev inequalities for higher order fractional derivatives. J Math Anal Appl. 2004;295:225‐236. · Zbl 1084.26009
[35] Di NezzaE, PalatucciG, ValdinociE. Hitchhiker’s guide to the fractional Sobolev spaces. Bull Sci Math. 2012;136:521‐573. · Zbl 1252.46023
[36] WillemM. Minimax Theorems, Progr. Nonlinear Differential Equations Appl, vol. 24. Boston, MA: Birkhäuser Boston, Inc; 1996. · Zbl 0856.49001
[37] SilvestreL. Regularity of the obstacle problem for a fractional power of the Laplace operator. Comm Pure Appl Math. 2007;60:67‐112. · Zbl 1141.49035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.