×

Finite-time control for attitude tracking maneuver of rigid satellite. (English) Zbl 1406.93163

Summary: The problem of finite-time control for attitude tracking maneuver of a rigid spacecraft is investigated. External disturbance, unknown inertia parameters are addressed. As stepping stone, a sliding mode controller is designed. It requires the upper bound of the lumped uncertainty including disturbance and inertia matrix. However, this upper bound may not be easily obtained. Therefore, an adaptive sliding mode control law is then proposed to release that drawback. Adaptive technique is applied to estimate that bound. It is proved that the closed-loop attitude tracking system is finite-time stable. The tracking errors of the attitude and the angular velocity are asymptotically stabilized. Moreover, the upper bound on the lumped uncertainty can be exactly estimated in finite time. The attitude tracking performance with application of the control scheme is evaluated through a numerical example.

MSC:

93C40 Adaptive control/observation systems
93B12 Variable structure systems
93C95 Application models in control theory
93D20 Asymptotic stability in control theory

References:

[1] Ahmed, J.; Coppola, V. T.; Bernstein, D. S., Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identification, Journal of Guidance, Control, and Dynamics, 21, 5, 684-691 (1998)
[2] Yoon, H.; Agrawal, B. N., Adaptive control of uncertain hamiltonian multi-input multi-output systems: with application to spacecraft control, IEEE Transactions on Control Systems Technology, 17, 4, 900-906 (2009) · doi:10.1109/TCST.2008.2011888
[3] Seo, D.; Akella, M. R., Separation property for the rigid-body attitude tracking control problem, Journal of Guidance, Control, and Dynamics, 30, 6, 1569-1576 (2007) · doi:10.2514/1.30296
[4] Seo, D.; Akella, M. R., High-performance spacecraft adaptive attitude-tracking control through attracting-manifold design, Journal of Guidance, Control, and Dynamics, 31, 4, 884-891 (2008) · doi:10.2514/1.33308
[5] Yang, C.-D.; Sun, Y.-P., Mixed \(H_2/H_∞\) state-feedback design for microsatellite attitude control, Control Engineering Practice, 10, 9, 951-970 (2002) · doi:10.1016/S0967-0661(02)00049-7
[6] Zheng, Q.; Wu, F., Nonlinear \(H_∞\) control designs with axisymmetric spacecraft control, Journal of Guidance, Control, and Dynamics, 32, 3, 850-859 (2009) · doi:10.2514/1.40060
[7] Kristiansen, R.; Nicklasson, P. J.; Gravdahl, J. T., Satellite attitude control by quaternion-based backstepping, IEEE Transactions on Control Systems Technology, 17, 1, 227-232 (2009) · doi:10.1109/TCST.2008.924576
[8] Zhao, X.; Zhang, L.; Shi, P.; Karimi, H., Novel stability criteria for TS fuzzy systems
[9] Zhao, X.; Zhang, L.; Shi, P.; Karimi, H., Robust control of continuous-time systems with state-dependent uncertainties and its application to electronic Circuits
[10] Carrington, C. K.; Junkins, J. L., Optimal nonlinear feedack control for spacecraft attitude maneuvers, Journal of Guidance, Control, and Dynamics, 9, 1, 99-107 (1986) · Zbl 0596.93027
[11] Luo, W.; Chu, Y.-C.; Ling, K.-V., Inverse optimal adaptive control for attitude tracking of spacecraft, IEEE Transactions on Automatic Control, 50, 11, 1639-1654 (2005) · Zbl 1365.93339 · doi:10.1109/TAC.2005.858694
[12] Wallsgrove, R. J.; Akella, M. R., Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances, Journal of Guidance, Control, and Dynamics, 28, 5, 957-963 (2005)
[13] Garcia, L.; Farquhar, R.; Eastman, T., New opportunities for a historic spacecraft, Space Weather, 10, 8 (2012) · doi:10.1029/2012SW000832
[14] Di Gennaro, S., Adaptive robust tracking for flexible spacecraft in presence of disturbances, Journal of Optimization Theory and Applications, 98, 3, 545-568 (1998) · Zbl 0914.93033
[15] Yamashita, T.; Ogura, N.; Kurii, T.; Hashimoto, T., Improved satellite attitude control using a disturbance compensator, Acta Astronautica, 55, 1, 15-25 (2004) · doi:10.1016/j.actaastro.2004.02.004
[16] Bošković, J. D.; Li, S.-M.; Mehra, R. K., Robust tracking control design for spacecraft under control input saturation, Journal of Guidance, Control, and Dynamics, 27, 4, 627-633 (2004)
[17] Li, Z.-X.; Wang, B.-L., Robust attitude tracking control of spacecraft in the presence of disturbances, Journal of Guidance, Control, and Dynamics, 30, 4, 1156-1159 (2007) · doi:10.2514/1.26230
[18] Chen, Z.; Huang, J., Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control, IEEE Transactions on Automatic Control, 54, 3, 600-605 (2009) · Zbl 1367.93302 · doi:10.1109/TAC.2008.2008350
[19] Sanyal, A.; Fosbury, A.; Chaturvedi, N.; Bernstein, D. S., Inertia-free spacecraft attitude tracking with disturbance rejection and almost global stabilization, Journal of Guidance, Control, and Dynamics, 32, 4, 1167-1178 (2009) · doi:10.2514/1.41565
[20] Hu, Q.; Xiao, B.; Friswell, M. I., Robust fault-tolerant control for spacecraft attitude stabilisation subject to input saturation, IET Control Theory and Applications, 5, 2, 271-282 (2011) · doi:10.1049/iet-cta.2009.0628
[21] Edwards, C.; Spurgeon, S. K., Sliding Mode Control: Theory and Applications (1998), Taylor & Francis
[22] Cai, W.; Liao, X. H.; Song, Y. D., Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft, Journal of Guidance, Control, and Dynamics, 31, 5, 1456-1463 (2008) · doi:10.2514/1.31158
[23] Dwyer, T. A. W.; Sira-Ramirez, H., Variable-structure control of spacecraft attitude maneuvers, Journal of Guidance, Control, and Dynamics, 11, 3, 262-270 (1988) · Zbl 0659.93044
[24] Chen, Y.-P.; Lo, S.-C., Sliding-mode controller design for spacecraft attitude tracking maneuvers, IEEE Transactions on Aerospace and Electronic Systems, 29, 4, 1328-1333 (1993) · doi:10.1109/7.259536
[25] Pukdeboon, C.; Zinober, A. S. I.; Thein, M.-W. L., Quasi-continuous higher order sliding-mode controllers for spacecraft-attitude-tracking maneuvers, IEEE Transactions on Industrial Electronics, 57, 4, 1436-1444 (2010) · doi:10.1109/TIE.2009.2030215
[26] Wu, S. N.; Sun, X. Y.; Sun, Z. W.; Wu, X. D., Sliding-mode control for staring-mode spacecraft using a disturbance observer, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 224, 2, 215-224 (2010) · doi:10.1243/09544100JAERO631
[27] Zhu, Z.; Xia, Y.; Fu, M., Adaptive sliding mode control for attitude stabilization with actuator saturation, IEEE Transactions on Industrial Electronics, 58, 10, 4898-4907 (2011) · doi:10.1109/TIE.2011.2107719
[28] Xia, Y.; Zhu, Z.; Fu, M.; Wang, S., Attitude tracking of rigid spacecraft with bounded disturbances, IEEE Transactions on Industrial Electronics, 58, 2, 647-659 (2011) · doi:10.1109/TIE.2010.2046611
[29] Hu, Q.; Xiao, B., Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness, Nonlinear Dynamics, 64, 1-2, 13-23 (2011) · Zbl 1281.93029 · doi:10.1007/s11071-010-9842-z
[30] Jin, E.; Sun, Z., Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control, Aerospace Science and Technology, 12, 4, 324-330 (2008) · Zbl 1273.70053 · doi:10.1016/j.ast.2007.08.001
[31] Cao, Y.; Ren, W.; Meng, Z., Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking, Systems and Control Letters, 59, 9, 522-529 (2010) · Zbl 1207.93103 · doi:10.1016/j.sysconle.2010.06.002
[32] Du, H.; Li, S., Finite-time attitude stabilization for a spacecraft using homogeneous method, Journal of Guidance, Control, and Dynamics, 35, 740-748 (2012)
[33] Yu, S.; Yu, X.; Shirinzadeh, B.; Man, Z., Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica, 41, 11, 1957-1964 (2005) · Zbl 1125.93423 · doi:10.1016/j.automatica.2005.07.001
[34] Ando, H.; Imamura, T.; Nabatov, A.; Futaana, Y.; Iwata, T.; Hanada, H.; Matsumoto, K.; Mochizuki, N.; Kono, Y.; Noda, H.; Liu, Q.; Oyama, K. I.; Yamamoto, Z.; Saito, A., Dual-spacecraft radio occultation measurement of the electron density near the lunar surface by the SELENE mission, Journal of Geophysical Research-Space Physics, 117, A8 (2012) · doi:10.1029/2011JA017141
[35] Yeh, F.-K., Sliding-mode adaptive attitude controller design for spacecrafts with thrusters, IET Control Theory and Applications, 4, 7, 1254-1264 (2010) · doi:10.1049/iet-cta.2009.0026
[36] Ding, S.; Li, S., Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques, Aerospace Science and Technology, 13, 4-5, 256-265 (2009) · doi:10.1016/j.ast.2009.05.001
[37] Zhu, Z.; Xia, Y.; Fu, M., Attitude stabilization of rigid spacecraft with finite-time convergence, International Journal of Robust and Nonlinear Control, 21, 6, 686-702 (2011) · Zbl 1214.93100 · doi:10.1002/rnc.1624
[38] Godard, G.; Kumar, K. D., Robust attitude stabilization of spacecraft subject to actuator failures, Acta Astronautica, 68, 7-8, 1242-1259 (2011) · doi:10.1016/j.actaastro.2010.10.017
[39] Zou, A.-M.; Kumar, K. D.; Hou, Z.-G.; Liu, X., Finite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 41, 4, 950-963 (2011) · doi:10.1109/TSMCB.2010.2101592
[40] Godard, G.; Kumar, K. D., Fault tolerant reconfigurable satellite formations using adaptive variable structure techniques, Journal of Guidance, Control, and Dynamics, 33, 3, 969-984 (2010) · doi:10.2514/1.38580
[41] Shin, D.; Moon, G.; Kim, Y., Design of reconfigurable flight control system using adaptive sliding mode control: actuator fault, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 219, 4, 321-328 (2005) · doi:10.1243/095441005X30333
[42] Crassidis, J. L.; Markley, F. L., Sliding mode control using modified Rodrigues parameters, Journal of Guidance, Control, and Dynamics, 19, 6, 1381-1383 (1996) · Zbl 0865.93044
[43] Wang, H.; Han, Z.-Z.; Xie, Q.-Y.; Zhang, W., Finite-time chaos control via nonsingular terminal sliding mode control, Communications in Nonlinear Science and Numerical Simulation, 14, 6, 2728-2733 (2009) · Zbl 1221.37225 · doi:10.1016/j.cnsns.2008.08.013
[44] Sidi, M. J., Spacecraft Dynamics and Control (1997), Cambridge, UK: Cambridge University Press, Cambridge, UK
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.