×

Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways. (English) Zbl 1405.92085

Summary: The correct localisation of transcription factors is vitally important for the proper functioning of many intracellular signalling pathways. Experimental data has shown that many pathways exhibit oscillations in concentrations of the substances involved, both temporally and spatially. Negative feedback loops are important components of these oscillations, providing fine regulation for the factors involved. In this paper we consider mathematical models of two such pathways – Hes1 and p53-Mdm2.
Building on previous mathematical modelling approaches, we derive systems of partial differential equations to capture the evolution in space and time of the variables in the Hes1 and p53-Mdm2 systems. Through computational simulations we show that our reaction-diffusion models are able to produce sustained oscillations both spatially and temporally, accurately reflecting experimental evidence and advancing previous models. The simulations of our models also allow us to calculate a diffusion coefficient range for the variables in each mRNA and protein system, as well as ranges for other key parameters of the models, where sustained oscillations are observed. Finally, by exploiting the explicitly spatial nature of the partial differential equations, we are also able to manipulate mathematically the spatial location of the ribosomes, thus controlling where the proteins are synthesized within the cytoplasm. The results of these simulations predict an optimal distance outside the nucleus where protein synthesis should take place in order to generate sustained oscillations.
Using partial differential equation models, new information can be gained about the precise spatio-temporal dynamics of mRNA and proteins. The ability to determine spatial localisation of proteins within the cell is likely to yield fresh insight into a range of cellular diseases such as diabetes and cancer.

MSC:

92C37 Cell biology
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
35Q92 PDEs in connection with biology, chemistry and other natural sciences

References:

[1] Abou-Jaoudé, W.; Ouattara, D.A.; Kaufman, M., From structure to dynamics: frequency tuning in the p53-mdm2 network i. logical approach, J. theor. biol., 258, 561-577, (2009) · Zbl 1402.92165
[2] Agrawal, S.; Archer, C.; Schaffer, D.V., Computational models of the notch network elucidate mechanisms of context-dependent signaling, Plos comput. biol., 5, e1000390, (2009)
[3] Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P., Molecular biology of the cell. garland science, (2008), Taylor and Francis Group Ltd Oxford
[4] Bar-Or, R.L.; Maya, R.; Segel, L.A.; Alon, U.; Levine, A.J.; Oren, M., Generation of oscillations by the p53-mdm2 feedback loop: a theoretical and experimental study, Pnas, 97, 11250-11255, (2000)
[5] Batchelor, E.; Mock, C.S.; Bhan, I.; Loewer, A.; Lahav, G., Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage, Mol. cell., 30, 277-289, (2008)
[6] Bennet, W.P.; Hussain, S.P.; Vahakangas, K.H.; Khan, M.A.; Shields, P.G.; Harris, C.C., Molecular epidemiology of human cancer risk: gene environment interactions and p53 mutation spectrum in human lung cancer, J. pathol., 187, 8-18, (1999)
[7] Busenberg, S.; Mahaffy, J.M., Interaction of spatial diffusion and delays in models of genetic control by repression, J. math. biol., 22, 313-333, (1985) · Zbl 0593.92010
[8] Cangiani, A.; Natalini, R., A spatial model of cellular molecular trafficking including active transport along microtubules, J. theor. biol., 267, 614-625, (2010) · Zbl 1414.92132
[9] Carter, S.; Vousden, K.H., Modifications of p53: competing for the lysines, Curr. opin. genet. dev., 19, 18-24, (2009)
[10] Ciliberto, A.; Novak, B.; Tyson, J.J., Steady states and oscillations in the p53/mdm2 network, Cell cycle, 4, 488-493, (2005)
[11] Coutts, A.S.; Adams, C.J.; La Thangue, N.B., P53 ubiquitination by mdm2: a never ending tail?, DNA repair (amst), 8, 483-490, (2009)
[12] Fall, C.P.; Marland, E.S.; Wagner, J.M.; Tyson, J.J., Computational cell biology, (2002), Springer New York · Zbl 1010.92019
[13] Geva-Zatorsky, N.; Rosenfeld, N.; Itzkovitz, S.; Milo, R.; Sigal, A.; Dekel, E.; Yarnitzky, T.; Liron, Y.; Polak, P.; Lahav, G.; Alon, U., Oscillations and variability in the p53 system, Mol. syst. biol., 2, E1-E13, (2006)
[14] Goodwin, B.C., Oscillatory behavior in enzymatic control processes, Adv. enzyme regul., 3, 425-428, (1965)
[15] Gordon, K.E.; Van Leeuwen, I.M.M.; Laín, S.; Chaplain, M.A.J., Spatio-temporal modelling of the p53-mdm2 oscillatory system, Math. model. nat. phenom., 4, 97-116, (2009) · Zbl 1173.35325
[16] Hamstra, D.A.; Bhojani, M.S.; Griffin, L.B.; Laxman, B.; Ross, B.D.; Rehemtulla, A., Real-time evaluation of p53 oscillatory behaviour in vivo using bioluminescent imaging, Cancer res., 66, 7482-7489, (2006)
[17] Hirata, H.; Yoshiura, S.; Ohtsuka, T.; Bessho, Y.; Harada, T.; Yoshikawa, K.; Kageyama, R., Oscillatory expression of the bhlh factor hes1 regulated by a negative feedback loop, Science, 298, 840-843, (2002)
[18] Jones, S.N.; Roe, A.E.; Donehower, L.A.; Bradley, A., Rescue of embryonic lethality in mdm2-deficient mice by absence of p53, Nature, 378, 206-208, (1995)
[19] Klonis, N.; Rug, M.; Harper, I.; Wickham, M.; Cowman, A.; Tilley, L., Fluorescence photobleaching analysis for the study of cellular dynamics, Eur. biophys. J., 31, 36-51, (2002)
[20] Lahav, G.; Rosenfeld, N.; Sigal, A.; Geva-Zatorsky, N.; Levine, A.J.; Elowitz, M.B.; Alon, U., Dynamics of the p53-mdm2 feedback loop in individual cells, Nat. genet., 36, 147-150, (2004)
[21] Lewis, J., Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator, Curr. biol., 13, 1398-1408, (2003)
[22] Ma, L.; Wagner, J.; Rice, J.J.; Hu, W.; Levine, A.J.; Stolovitzky, G.A., A plausible model for the digital response of p53 to DNA damage, Pnas, 102, 14266-14271, (2005)
[23] Mahaffy, J.M., Genetic control models with diffusion and delays, Math. biosci., 90, 519-533, (1988) · Zbl 0684.92012
[24] Mahaffy, J.M.; Pao, C.V., Models of genetic control by repression with time delays and spatial effects, J. math. biol., 20, 39-57, (1984) · Zbl 0577.92010
[25] Marine, J.C.; Jochemsen, A.G., Mdmx and mdm2: brothers in arms?, Cell cycle, 3, 900-904, (2003)
[26] Matsuda, T.; Miyawaki, A.; Nagai, T., Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein, Nat. meth., 5, 339-345, (2008)
[27] Mihalas, G.I.; Neamtu, M.; Opris, D.; Horhat, R.F., A dynamic P53-MDM2 model with time delay, Chaos, solitons and fractals, 30, 936-945, (2006) · Zbl 1142.92321
[28] Momiji, H.; Monk, N.A.M., Dissecting the dynamics of the hes1 genetic oscillator, J. theor. biol., 254, 784-798, (2008) · Zbl 1400.92194
[29] Monk, N.A.M., Oscillatory expression of hes1, p53, and NF-\(\kappa\) B driven by transcriptional time delays, Curr. biol., 13, 1409-1413, (2003)
[30] Montes de Oca Luna, R.; Wagner, D.S.; Lozano, G., Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53, Nature, 378, 203-206, (1995)
[31] Nelson, D.E.; Ihekwaba, A.E.C.; Elliott, M.; Johnson, J.R.; Gibney, C.A.; Foreman, B.E.; Nelson, G.; See, V.; Horton, C.A.; Spiller, D.G.; Edwards, S.W.; McDowell, H.P.; Unitt, J.F.; Sullivan, E.; Grimley, R.; Benson, N.; Broomhead, D.; Kell, D.B.; White, M.R.H., Oscillations in NF-\(\kappa\) B signaling control the dynamics of gene expression, Science, 306, 704-708, (2004)
[32] Ouattara, D.A.; Abou-Jaoudé, W.; Kaufman, M., From structure to dynamics: frequency tuning in the p53-mdm2 network. ii differential and stochastic approaches, J. theor. biol., 264, 1177-1189, (2010) · Zbl 1406.92250
[33] Proctor, C.J.; Gray, D.A., Explaining oscillations and variability in the p53-mdm2 system, BMC syst. biol., 2, 75, 1-20, (2008)
[34] Puszyński, K.; Hat, B.; Lipniacki, T., Oscillations and bistability in the stochastic model of p53 regulation, J. theor. biol., 254, 452-465, (2008) · Zbl 1400.92200
[35] Seksek, O.; Biwersi, J.; Verkman, A.S., Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus, J. cell. biol., 138, 131-142, (1997)
[36] Shankaran, H.; Ippolito, D.L.; Chrisler, W.B.; Resat, H.; Bollinger, N.; Opresko, L.K.; Wiley, H.S., Rapid and sustained nuclear-cytoplasmic ERK oscillations induced by epidermal growth factor, Mol. syst. biol., 5, 322, (2009)
[37] Stommel, J.M.; Wahl, G.M., Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation, Embo. J., 23, 1556-1574, (2004)
[38] Toledo, F.; Wahl, G.M., Regulating the p53 pathway: in vitro hypotheses, in vivo veritas, Nat. rev. cancer, 6, 909-923, (2006)
[39] Vogelstein, B.; Lane, D.; Levine, A.J., Surfing the p53 network, Nature, 408, 307-310, (2000)
[40] Vousden, K.H.; Prives, C., Blinded by the light: the growing complexity of p53, Cell, 137, 413-431, (2009)
[41] Xirodimas, D.P.; Stephen, C.W.; Lane, D.P., Cocompartmentalization of p53 and mdm2 is a major determinant for mdm2-mediated degradation of p53, Exp. cell. res., 270, 66-77, (2001)
[42] Zhang, T.; Brazhnik, P.; Tyson, J.J., Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis, Cell cycle, 6, 85-94, (2007)
[43] Zilfou, J.T.; Lowe, S.W., Tumor suppressive functions of p53, Cold spring harb perspect biol., 1, a001883, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.