×

The dimension split element-free Galerkin method for three-dimensional potential problems. (English) Zbl 1404.65275

Summary: This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Belytschko, T; Krongauz, Y; Organ, D; etal., Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Eng., 139, 3-47, (1996) · Zbl 0891.73075 · doi:10.1016/S0045-7825(96)01078-X
[2] Dolbow, J; Belytschko, T, An introduction to programming the meshless element free Galerkin method, Arch. Comput. Methods Eng., 5, 207-241, (1998) · doi:10.1007/BF02897874
[3] Canelas, A; Laurain, A; Novotny, AA, A new reconstruction method for the inverse potential problem, J. Comput. Phys., 268, 417-431, (2014) · Zbl 1349.35425 · doi:10.1016/j.jcp.2013.10.020
[4] Sun, LL; Chen, W; Zhang, CZ, A new formulation of regularized meshless method applied to interior and exterior anisotropic potential problems, Appl. Math. Model., 37, 7452-7464, (2013) · Zbl 1426.65201 · doi:10.1016/j.apm.2013.02.036
[5] Khaji, N; Javaran, SH, New complex Fourier shape functions for the analysis of two-dimensional potential problems using boundary element method, Eng. Anal. Bound. Elem., 37, 260-272, (2013) · Zbl 1352.65589 · doi:10.1016/j.enganabound.2012.11.001
[6] Gong, YP; Dong, CY; Qin, XC, An isogeometric boundary element method for three dimensional potential problems, J. Comput. Appl. Math., 313, 454-468, (2017) · Zbl 1353.65129 · doi:10.1016/j.cam.2016.10.003
[7] Sun, FL; Zhang, YM; Young, DL; etal., A new boundary meshfree method for potential problems, Adv. Eng. Softw., 100, 32-42, (2016) · doi:10.1016/j.advengsoft.2016.06.009
[8] Mukherjee, YX; Mukherjee, S, The boundary node method for potential problems, Int. J. Numer. Methods Eng., 40, 797-815, (1997) · Zbl 0885.65124 · doi:10.1002/(SICI)1097-0207(19970315)40:5<797::AID-NME89>3.0.CO;2-#
[9] Chati, MK; Mukherjee, S, The boundary node method for three-dimensional problems in potential theory, Int. J. Numer. Methods Eng., 47, 1523-1547, (2000) · Zbl 0961.65100 · doi:10.1002/(SICI)1097-0207(20000330)47:9<1523::AID-NME836>3.0.CO;2-T
[10] Zhang, YM; Sun, FL; Young, DL; etal., Average source boundary node method for potential problems, Eng. Anal. Bound. Elem., 70, 114-125, (2016) · Zbl 1403.65243 · doi:10.1016/j.enganabound.2016.06.007
[11] Li, XL, Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces, Appl. Numer. Math., 99, 77-97, (2016) · Zbl 1329.65274 · doi:10.1016/j.apnum.2015.07.006
[12] Lu, YY; Belytschko, T; Gu, L, A new implementation of the element free Galerkin method, Comput. Methods Appl. Mech. Eng., 113, 397-414, (1994) · Zbl 0847.73064 · doi:10.1016/0045-7825(94)90056-6
[13] Li, XL; Zhang, SG; Wang, Y; etal., Analysis and application of the element-free Galerkin method for nonlinear sine-Gordon and generalized sinh-Gordon equations, Comput. Math. Appl., 71, 1655-1678, (2016) · Zbl 1443.65211 · doi:10.1016/j.camwa.2016.03.007
[14] Vahid, S, Topology optimization using bi-directional evolutionary structural optimization based on the element-free Galerkin method, Eng. Optim., 48, 380-396, (2016) · doi:10.1080/0305215X.2015.1012076
[15] Dehghan, M; Abbaszadeh, M; Mohebbi, A, The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin-Bona-Mahony-Burgers and regularized long-wave equations on non-rectangular domains with error estimate, J. Comput. Appl. Math., 286, 211-231, (2015) · Zbl 1315.65086 · doi:10.1016/j.cam.2015.03.012
[16] Joldes, GR; Wittek, A; Miller, K, Adaptive numerical integration in element-free Galerkin methods for elliptic boundary value problems, Eng. Anal. Bound. Elem., 51, 52-63, (2015) · Zbl 1403.65138 · doi:10.1016/j.enganabound.2014.10.007
[17] Chen, L; Liu, C; Ma, HP; etal., An interpolating local Petrov-Galerkin method for potential problems, Int. J. Appl. Mech., 6, 1450009, (2014) · doi:10.1142/S1758825114500094
[18] Deng, YJ; Liu, C; Peng, MJ; etal., The interpolating complex variable element-free Galerkin method for temperature field problems, Int. J. Appl. Mech., 7, 1550017, (2015) · doi:10.1142/S1758825115500179
[19] Peng, MJ; Cheng, YM, A boundary element-free method (BEFM) for two-dimensional potential problems, Eng. Anal. Bound. Elem., 33, 77-82, (2009) · Zbl 1160.65348 · doi:10.1016/j.enganabound.2008.03.005
[20] Lian, H; Kerfriden, P; Bordas, S, Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity, Int. J. Numer. Methods Eng., 106, 972-1017, (2016) · Zbl 1352.74467 · doi:10.1002/nme.5149
[21] Chen, T; Raju, IS, A coupled finite element and meshless local Petrov-Galerkin method for two-dimensional potential problems, Comput. Methods Appl. Mech. Eng., 192, 4533-4550, (2003) · Zbl 1037.65115 · doi:10.1016/S0045-7825(03)00421-3
[22] Cheng, YM; Chen, MJ, A boundary element-free method for linear elasticity, Acta. Mech. Sin., 19, 181-186, (2003) · doi:10.1007/BF02487680
[23] Zhang, Z; Liew, KM; Cheng, YM, Coupling of the improved element-free Galerkin and boundary element methods for two-dimensional elasticity problems, Eng. Anal. Bound. Elem., 32, 100-107, (2008) · Zbl 1244.74204 · doi:10.1016/j.enganabound.2007.06.006
[24] Zhang, Z; Liew, KM; Cheng, YM; etal., Analyzing 2D fracture problems with the improved element-free Galerkin method, Eng. Anal. Bound. Elem., 32, 241-250, (2008) · Zbl 1244.74240 · doi:10.1016/j.enganabound.2007.08.012
[25] Zhang, Z; Li, DM; Cheng, YM; etal., The improved element-free Galerkin method for three-dimensional wave equation, Acta Mech. Sin., 28, 808-818, (2012) · Zbl 1345.65059 · doi:10.1007/s10409-012-0083-x
[26] Zhang, Z; Hao, SY; Liew, KM; etal., The improved element-free Galerkin method for two-dimensional elastodynamics problems, Eng. Anal. Bound. Elem., 37, 1576-1584, (2013) · Zbl 1287.74055 · doi:10.1016/j.enganabound.2013.08.017
[27] Li, KT; Huang, AX, Mathematical aspect of the stream-function equations of compressible turbomachinery flows and their finite element approximation using optimal control, Comput. Methods Appl. Mech. Eng., 41, 175-194, (1983) · Zbl 0509.76071 · doi:10.1016/0045-7825(83)90005-1
[28] Li, KT; Huang, AX; Zhang, WL, A dimension split method for the 3-D compressible Navier-Stokes equations in turbomachine, Commun. Numer. Methods Eng., 18, 1-14, (2002) · Zbl 0999.76080 · doi:10.1002/cnm.459
[29] Li, KT; Yu, JP; Shi, F; etal., Dimension splitting method for the three dimensional rotating Navier-Stokes equations, Acta Math. Appl. Sinica, 28, 417-442, (2012) · Zbl 1253.76127 · doi:10.1007/s10255-012-0161-7
[30] Chen, H; Li, KT; Wang, S, A dimension split method for the incompressible Navier-Stokes equations in three dimensions, Int. J. Numer. Methods Fluids, 73, 409-435, (2013) · Zbl 1455.76035 · doi:10.1002/fld.3803
[31] Li, KT; Shen, XQ, A dimensional splitting method for the linearly elastic shell, Int. J. Comput. Math., 84, 807-824, (2007) · Zbl 1116.74037 · doi:10.1080/00207160701458328
[32] Hansen, E; Ostermann, A, Dimension splitting for evolution equations, Numer. Math., 108, 557-570, (2008) · Zbl 1149.65084 · doi:10.1007/s00211-007-0129-3
[33] Hansen, E; Ostermann, A, Dimension splitting for quasilinear parabolic equations, IMA J. Numer. Anal., 30, 857-869, (2010) · Zbl 1211.65117 · doi:10.1093/imanum/drn078
[34] Hou, RY; Wei, HB, Dimension splitting algorithm for a three-dimensional elliptic equation, Int. J. Comput. Math., 89, 112-127, (2012) · Zbl 1242.65238 · doi:10.1080/00207160.2011.631531
[35] Maten, EJW, Splitting methods for fourth order parabolic partial differential equations, Computing, 37, 335-350, (1986) · Zbl 0594.65070 · doi:10.1007/BF02251091
[36] Bragin, MD; Rogov, BV, On exact dimensional splitting for a multidimensional scalar quasilinear hyperbolic conservation law, Dokl. Math., 94, 382-386, (2016) · Zbl 1355.35133 · doi:10.1134/S1064562416040086
[37] D’souza, RM; Margolus, NH; Smith, MA, Dimension-splitting for simplifying diffusion in lattice-gas models, J. Stat. Phys., 107, 401-422, (2002) · Zbl 1007.82005 · doi:10.1023/A:1014587326991
[38] Cheng, H; Peng, MJ; Cheng, YM, The hybrid improved complex variable element-free Galerkin method for three-dimensional potential problems, Eng. Anal. Bound. Elem., 84, 52-62, (2017) · Zbl 1403.65131 · doi:10.1016/j.enganabound.2017.08.001
[39] Cheng, H; Peng, MJ; Cheng, YM, A fast complex variable element-free Galerkin method for three-dimensional wave propagation problems, Int. J. Appl. Mech., 9, 1750090, (2017) · doi:10.1142/S1758825117500909
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.