×

The Lorenzo-Hartley’s function for fractional calculus and its applications pertaining to fractional order modelling of anomalous relaxation in dielectrics. (English) Zbl 1401.26015

Summary: Considering the applications and a great significance of the study pertaining to generalized functions in applied sciences, the author investigated the Lorenzo-Hartley’s function which is a generalization of classical functions widely used in fractional calculus. The Laplace transform pairs are derived and the requirements for the Lorenzo-Hartley’s function \(G_{\nu , \mu ,\delta }(a,c,t)\) to be completely monotonic (for \(t > 0\)) are investigated. The author has shown the applications of this generalized function to describe the relaxation models, particularly in dielectrics. The Lorenzo-Hartley’s function \(G_{\nu , \mu ,\delta }(a,c,t)\) of a real variable \(t\) is considered to investigate a computable mathematical framework for standard Debye and non-Debye relaxation processes in dielectric materials. The non-negative spectral distribution function is obtained for the corresponding response function. It is also demonstrated that the classical models like Cole-Cole (C-C), Davidson-Cole (D-C), and Havriliak-Negami (H-N) for non-Debye relaxation and standard Debye relaxation are the particular cases of the Lorenzo-Hartley’s function. Some of the study cases are also worked out to visualize the effects of variations of parameters on the response function and corresponding spectral distribution function. A generalized and unified fractional relaxation differential equation which governs response functions for classical dielectrics models pertaining to non-Debye relaxation (C-C, D-C, and H-N) is also established in the present investigation.

MSC:

26A33 Fractional derivatives and integrals
33E12 Mittag-Leffler functions and generalizations
33E20 Other functions defined by series and integrals
44A10 Laplace transform
Full Text: DOI

References:

[1] Agarwal, RP, A propos dune note de M. pierre Humbert, C R Acad Sci Paris, 236, 2031-2032, (1953) · Zbl 0051.30801
[2] Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment and applications, 2nd edn. Wiley, Hoboken · doi:10.1002/0471716243
[3] de Oliveira, E; Mainardi, F; Vaz, J, Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics, Eur Phy J Spec Top, 193, 161-171, (2011) · doi:10.1140/epjst/e2011-01388-0
[4] de Oliveira, EC; Mainardi, F; Vaz, J, Fractional models of anomalous relaxation based on the kilbas and saigo function, Meccanica, 49, 2049-2060, (2014) · Zbl 1307.34007 · doi:10.1007/s11012-014-9930-0
[5] Chaurasia, VBL; Pandey, SC, Computable extensions of generalized fractional kinetic equations in astrophysics research in astron, Astrophysics, 10, 22-32, (2010)
[6] Chaurasia, VBL; Pandey, SC, On a new computable solution of generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions, Astrophys Sp Sci, 317, 213-219, (2008) · doi:10.1007/s10509-008-9880-x
[7] Cole, KS; Cole, RH, Dispersion and absorption in dielectrics. I. alternating current characteristics, J Chem Phys, 9, 341-351, (1941) · doi:10.1063/1.1750906
[8] Cole, KS; Cole, RH, Dispersion and absorption in dielectrics. II. direct current characteristics, J Chem Phys, 10, 98-105, (1942) · doi:10.1063/1.1723677
[9] Davidson, DW; Cole, RH, Dielectric relaxation in glycerol, propylene glycol and \(n\)-propanol, J Chem Phys, 19, 1484-1490, (1951) · doi:10.1063/1.1748105
[10] Diethelm K (2010) The analysis of fractional differential equations. an application-oriented exposition using differential operators of Caputo type. Springer Lecture Notes in Mathematics No. 2004. Springer, Berlin · Zbl 1215.34001
[11] Goufo, D; Franc, E, A biomathematical view on the fractional dynamics of cellulose degradation, Fract Calc Appl Anal, 18, 554-564, (2015) · Zbl 1316.26004
[12] Erdélyi A, Magnus W, Oberhettinger F, Tricomi FG (1954) Tables of integral transforms, vol 2. McGraw-Hill, New York · Zbl 0055.36401
[13] Gorenflo R, Kilbas AA, Mainardi F, Rogosin SV (2014) Mittag-Leffler functions, related topics and applications. Springer, Berlin · Zbl 1309.33001 · doi:10.1007/978-3-662-43930-2
[14] Gorenflo R, Mainardi F (1997) Fractional calculus: integral and differential equations of fractional order. In: Carpinteri A, Mainardi F (eds) Fractals and fractional calculus in continuum mechanics. Springer, Wien, pp 223-276. arXiv:0805.3823 · Zbl 1438.26010
[15] Gripenberg G, Londen SO, Staffans OJ (1990) Volterra integral and functional equations. Cambridge University Press, Cambridge, pp 143-147 · Zbl 0695.45002
[16] Hanyga, A; Seredyńska, M, On a mathematical framework for the constitutive equations of anisotropic dielectric relaxation, J Stat Phys, 131, 269-303, (2008) · Zbl 1151.78002 · doi:10.1007/s10955-008-9501-7
[17] Hartley TT, Lorenzo CF (1998) A solution to the fundamental linear fractional order differential equation. NASA/TP-1998-208963
[18] Havriliak, S; Negami, S, Comparison of the havriliak-negami and stretched exponential functions, Polymer, 37, 4107-4110, (1996) · doi:10.1016/0032-3861(96)00274-1
[19] Havriliak, S; Negami, S, A complex plane analysis of \(α \)-dispersions in some polymer systems, J Polym Sci, 14, 99-117, (1966)
[20] Havriliak, S; Negami, S, A complex plane representation of dielectric and mechanical relaxation processes in some polymers, Polymer, 8, 161-210, (1967) · doi:10.1016/0032-3861(67)90021-3
[21] Hilfer H (2000) Applications of fractional calculus in physics. World Scientific, Singapore · Zbl 0998.26002 · doi:10.1142/3779
[22] Hilfer, H, Analytical representations for relaxation functions of glasses, J Non Cryst Solids, 305, 122-126, (2002) · doi:10.1016/S0022-3093(02)01088-8
[23] Hilfer, H, H-function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems, Phys Rev E, 65, 061510/1-061510/5, (2002) · doi:10.1103/PhysRevE.65.061510
[24] Hilfer, R, On fractional relaxation, Fractals, 11, 251-257, (2003) · Zbl 1140.82315 · doi:10.1142/S0218348X03001914
[25] Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics, London
[26] Jonscher AK (1996) Universal relaxation law. Chelsea Dielectrics, London
[27] Jurlewicz, A; Weron, K, Relaxation of dynamically correlated clusters, J Non Cryst Solids, 305, 112-121, (2002) · doi:10.1016/S0022-3093(02)01087-6
[28] Jurlewicz, A; Weron, K; Teuerle, M, Generalized Mittag-Leffler relaxation: clustering-jump continuous-time random walk approach, Phys Rev E, 78, 011103/1-011103/8, (2008) · doi:10.1103/PhysRevE.78.011103
[29] Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam · Zbl 1092.45003
[30] Lorenzo CF (2009) The fractional meta-trigonometry based on the R-function. I. Background, definitions, and complexity function graphics. In: Proc. DETC/CIE 2009, ASME Int. Design Engineering Technical Conf., San Diego, CA, DETC2009-86731
[31] Lorenzo CF (2009) The fractional meta-trigonometry based on the R-function. II. Parity function graphics, Laplace transforms, fractional derivatives, meta-properties. In: Proc. DETC/CIE 2009, ASME Int. Design Engineering Technical Conf., San Diego, CA, DETC2009-86733
[32] Lorenzo, CF; Hartley, TT, Application of the principal fractional meta-trigonometric functions for the solution of linear commensurat-order time-invariant fractional equations, Philos Trans R Soc A, 371, 20120151, (2015) · Zbl 1342.34015 · doi:10.1098/rsta.2012.0151
[33] Lorenzo CF, Malti R, Hartley TT (2011) The solution of linear fractional differential equations using the fractional meta-trigonometric functions. In: Proc. ASME Int. Design Engineering Technical Conf., Washington, DC, DETC2011-47395
[34] Lorenzo CF, Hartley TT (1999) Generalized functions for the fractional calculus. NASA TP, 209424
[35] Lorenzo, CF; Hartley, TT, Fractional trigonometry and the spiral functions, Nonlinear Dyn, 38, 23-60, (2004) · Zbl 1094.26004 · doi:10.1007/s11071-004-3745-9
[36] Lorenzo CF, Hartley TT (2017) The fractional trigonometry: with application to fractional differential equations and science. Wiley, Hoboken · Zbl 1375.26003
[37] Mahmood, A; Parveen, S; Ara, A; Khan, NA, Exact analytic solution for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model, Commun Nonlinear Sci Numer Simulat, 14, 3309-3319, (2009) · Zbl 1221.76018 · doi:10.1016/j.cnsns.2009.01.017
[38] Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity. Imperial College Press, London · Zbl 1210.26004 · doi:10.1142/p614
[39] Mainardi, F; Garrappa, R, On complete monotonicity of the prabhakar function and non-Debye relaxation in dielectrics, J Comput Phys, 293, 70-80, (2015) · Zbl 1349.65085 · doi:10.1016/j.jcp.2014.08.006
[40] Mathai AM, Haubold HJ (2008) Special functions for applied scientists. Springer, New York · Zbl 1151.33001
[41] Mathai AM, Saxena RK, Haubold HJ (2008) The H-function. Theory and applications. Springer, Amsterdam · Zbl 1181.33001
[42] Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York · Zbl 0789.26002
[43] Miller, KS; Samko, SG, A note on the complete monotonicity of the generalized Mittag-Leffler function, Real Anal Exch, 23, 753-755, (1997) · Zbl 0964.33011
[44] Miller, KS; Samko, SG, Completely monotonic functions, Integr Transforms Spec Funct, 12, 389-402, (2001) · Zbl 1035.26012 · doi:10.1080/10652460108819360
[45] Mittag-Leffler, GM, Sur la nouvelle fonction \(E_{α }(x)\), C R Acad Sci Paris Ser 2, 137, 554-558, (1903) · JFM 34.0435.01
[46] Mittag-Leffler, GM, Sur la representation analytique dune function branche uniforme dune fonction, Acta Math, 29, 101-181, (1905) · JFM 36.0469.02 · doi:10.1007/BF02403200
[47] Nigmatullin, R; Ryabov, Y, Cole-Davidson dielectric relaxation as a self similar relaxation process, Phys Solid State, 39, 87-90, (1997) · doi:10.1134/1.1129804
[48] Nonnenmacher, T; Glöckle, W, A fractional model for mechanical stress relaxation, Philos Mag Lett, 64, 89-93, (1991) · doi:10.1080/09500839108214672
[49] Novikov, VV; Wojciechowski, KW; Komkova, OA; Thiel, T, Anomalous relaxation in dielectrics equations with fractional derivatives, Mater Sci Poland, 23, 977-984, (2005)
[50] Podlubny I (1999) Fractional differential equations. Academic, San Diego · Zbl 0924.34008
[51] Pollard, H, The completely monotonic character of the Mittag-Leffler function \(E_{α }(-x)\), Bull Am Math Soc, 54, 1115-1116, (1948) · Zbl 0033.35902 · doi:10.1090/S0002-9904-1948-09132-7
[52] Prabhakar, TR, A singular integral equation with a generalized Mittag-leffer function in the kernel, Yokohama Math J, 19, 7-15, (1971) · Zbl 0221.45003
[53] Ryabov, YE; Feldman, Y, Novel approach to the analysis of the non-Debye dielectric spectrum broadening, Phys A, 314, 370-378, (2002) · doi:10.1016/S0378-4371(02)01076-2
[54] Saha, UK; Arora, LK; Arora, AK, On the relationships of the R function of lorenzo and Hartley with other special functions of fractional calculus, Fract Calc Appl Anal, 12, 453-458, (2009) · Zbl 1198.33015
[55] Saxena, RK; Ram, J; Kumar, D, Alternative derivation of generalized fractional kinetic equations, J Fract Calc Appl, 4, 322-334, (2013) · Zbl 1488.44006
[56] Schneider, WR, Completely monotone generalized Mittag-Leffler functions, Expos Math, 14, 3-16, (1996) · Zbl 0843.60024
[57] Shakeel, A; Ahmad, S; Khan, H; Vieru, H, Solutions with wright functions for time fractional convection flow near a heated vertical plate, Adv Diff Equ, 51, 1-11, (2016) · Zbl 1419.80011
[58] Sibatov RT, Uchaikin DV (2010) Fractional relaxation and wave equations for dielectric characterized by the Havriliak-Negami response function, p 5. arXiv:1008.3972
[59] Stanislavsky, A; Weron, K; Trzmiel, J, Subordination model of anomalous diffusion leading to the two-power-law relaxation responses, EPL, 91, 40003/1-40003/6, (2010) · doi:10.1209/0295-5075/91/40003
[60] Szabat, B; Weron, K; Hetman, P, Heavy-tail properties of relaxation time distributions underlying the havriliak-negami and the kohlrausch-Williams-Watts relaxation patterns, J Non Cryst Solids, 353, 4601-4607, (2007) · doi:10.1016/j.jnoncrysol.2007.01.092
[61] Weron, K; Jurlewicz, A; Magdziarz, M, Havriliak-negami response in the framework of the continuous-time random walk, Acta Phyisica Polonica B, 36, 1855-1868, (2005)
[62] Weron, K; Kotulski, M, On the Cole-Cole relaxation function and related Mittag-Leffler distribution, Phys A, 232, 180-188, (1996) · doi:10.1016/0378-4371(96)00209-9
[63] Wiman, A, Uber den fundamentalsatz in der theorie der functionen \(E_{α }(x)\), Acta Math, 29, 191-201, (1905) · JFM 36.0471.01 · doi:10.1007/BF02403202
[64] Zemanian AH (1972) Realizability theory for continuous linear systems. Academic, San Diego · Zbl 0293.93007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.