×

Projection and self-adaptive projection methods for the Signorini problem with the BEM. (English) Zbl 1398.65327

Summary: We propose two new projection methods for solving the Signorini problem and study the relationship between them. Since the Signorini boundary condition is equivalent to a projection fixed point problem, the methods formulate the Signorini boundary condition into a sequence of Robin boundary conditions and only require solving a variational problem with simple boundary conditions at each iterative step. The convergence speed of the first method depends on the parameter \(\rho\) heavily, and it is difficult to choose a proper \(\rho\) for individual problems. To improve the efficiency of the method, we propose an adaptive projection method which adjusts the parameter \(\rho\) automatically per iteration. We establish the convergence analysis of the methods. Because the Signorini boundary condition is given in an iterative form by the potential and its derivative on the boundary of the domain, we can easily provide the boundary element approximation of the problem. Finally, we present some numerical simulations which illustrate the performance of the methods.

MSC:

65N38 Boundary element methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35J86 Unilateral problems for linear elliptic equations and variational inequalities with linear elliptic operators
Full Text: DOI

References:

[1] Glowinski, G., Numerical Methods for Nonlinear Variational Problems, (2008), Springer-Verlag Berlin · Zbl 1139.65050
[2] Capatina, A., Variational Inequalities and Frictional Contact Problems, (2014), Springer Cham · Zbl 1405.49001
[3] Poullikkas, A.; A. Karageorghis, A.; Georgiou, G., The method of fundamental solutions for Signorini problems, IMA J. Numer. Annual., 18, 273-285, (1998) · Zbl 0901.73017
[4] Poullikkas, A.; Karageorghis, A.; Georgiou, G., The numerical solution of three-dimensional Signorini problems with the method of fundamental solution, Eng. Ana.L Bound. Elem., 25, 221-227, (2001) · Zbl 0985.78004
[5] Karageorghis, A.; Lesnic, D.; Marin, L., The method of fundamental solutions for solving direct and inverse Signorini problems, Comput. Struct., 151, 11-19, (2015)
[6] Han, H. D., A direct boundary element method for Signorini problems, Math. Comp., 55, 115-128, (1990) · Zbl 0705.65084
[7] Spann, W., On the boundary element method for the Signorini problem of the Laplacian, Numer. Math., 65, 337-356, (1993) · Zbl 0798.65106
[8] Aitchison, J. M.; Poole, M. W., A numerical algorithm for the solution of Signorini problems, J. Comput. Appl. Math., 94, 55-67, (1998) · Zbl 0937.74071
[9] Leontiev, A.; Huacas, W.; Herskovits, J., An optimization technique for the solution of the Signorini problem using the boundary element method, Struct. Multidiscip. Optim., 24, 72-77, (2002)
[10] Maischak, M.; Stephan, E. P., Adaptive hp-versions of BEM for Signorini problems, Appl. Numer. Math., 54, 425-449, (2005) · Zbl 1114.74062
[11] Steinbach, O., Boundary element methods for variational inequalities, Numer. Math., 126, 173-197, (2014) · Zbl 1291.65193
[12] Ryoo, C. S., Numerical verification of solutions for some unilateral boundary value problems, Comput. Math. Appl., 44, 787-797, (2002) · Zbl 1035.65064
[13] Ryoo, C. S., Numerical verification of solutions for Signorini problems using Newton-like method, Internat. J. Numer. Methods Engrg., 73, 1181-1196, (2008) · Zbl 1159.76006
[14] Ito, K.; Kunisch, K., Semi-smooth Newton methods for variational inequalities of the first kind, M2AN Math. Model. Numer. Anal., 37, 41-62, (2003) · Zbl 1027.49007
[15] Hintermüller, M.; Ito, K.; Kunisch, K., The primal-dual active set strategy as semismooth Newton method, SIAM J. Optim., 13, 865-888, (2003) · Zbl 1080.90074
[16] Ito, K.; Raleigh, .; Kunisch, K.; Graz, ., Semi-smooth Newton methods for the Signorini problem, Appl. Math., 53, 455-456, (2008) · Zbl 1199.49064
[17] Kunisch, K.; Wachsmuth, D., Path-following for optimal control of stationary variational inequalities, Comput. Optim. Appl., 51, 1345-1373, (2012) · Zbl 1239.49010
[18] Ni, T.; Zhai, J., A regularized smoothing Newton-type algorithm for quasi-variational inequalities, Comput. Math. Appl., 68, 1312-1324, (2014) · Zbl 1367.65100
[19] Hintermüller, M.; Rasch, J., Several path-following methods for a class of gradient constrained variational inequalities, Comput. Math. Appl., 69, 1045-1067, (2015) · Zbl 1443.65087
[20] Ito, K.; Kunisch, K., Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces, Nonlinear Anal, 41, 591-616, (2000) · Zbl 0971.49014
[21] Stadler, G., Path-following and augmented Lagrangian methods for contact problems in linear elasticity, J. Comput. Appl. Math., 203, 533-547, (2007) · Zbl 1119.49028
[22] Zhang, S. G.; Li, X. L., Boundary augmented Lagrangian method for contact problems in linear elasticity, Eng. Anal. Bound. Elem., 61, 127-133, (2015) · Zbl 1403.74065
[23] Zhang, S. G.; Li, X. L., Boundary augmented Lagrangian method for the Signorini problem, Appl. Math., 61, 215-231, (2016) · Zbl 1389.35164
[24] Chouly, F.; Hild, P., On convergence of the penalty method for unilateral contact problems, Appl. Numer. Math., 65, 27-40, (2013) · Zbl 1312.74018
[25] Zeng, Y. P.; Chen, J. R.; Wang, F., Error estimates of the weakly over-penalized symmetric interior penalty method for two variational inequalities, Comput. Math. Appl., 69, 760-770, (2015) · Zbl 1443.65088
[26] Zhang, S. G.; Zhu, J. L., A projection iterative algorithm boundary element method for the Signorini problem, Eng. Anal. Bound. Elem., 37, 176-181, (2013) · Zbl 1352.65601
[27] Ren, Y. L.; Li, X. L., A meshfree method for Signorini problems using boundary integral equations, Math. Probl. Eng. Elem., 37, 1-11, (2015)
[28] Li, X. L.; Yu, C. J., Meshless projection iterative analysis of Signorini problems using a boundary element-free method, Comput. Math. Appl., 70, 869-882, (2015) · Zbl 1443.65409
[29] Noor, M. A., Some algorithms for general monotone variational inequalities, Math. Comput. Modelling, 29, 1-9, (1999) · Zbl 0991.49004
[30] Noor, M. A., Splitting algorithms for general pseudomonotone mixed variational inequalities, J. Comput. Appl. Math., 18, 111-124, (2000)
[31] Noor, M. A., Modified resolvent splitting algorithms for general mixed variational inequalities, J. Global Optim., 135, 75-89, (2001)
[32] Noor, M. A., Some developments in general variational inequalities, Appl. Math. Comput., 152, 199-277, (2004) · Zbl 1134.49304
[33] He, B. S., Inexact implicit methods for monotone general variational inequalities, Math. Program., 86, 199-217, (1999) · Zbl 0979.49006
[34] Bnouhachem, A., An inexact implicit method for general mixed variational inequalities, J. Comput. Appl. Math., 200, 417-426, (2007)
[35] Ge, Z. L.; Han, D. R., Self-adaptive implicit methods for monotone variant variational inequalities, J. Inequal. Appl., 1-20, (2009), Art. ID 458134 · Zbl 1180.49009
[36] Brebbia, C. A., The Boundary Element Method for Engineers, (1978), Pentech Press London · Zbl 0414.65060
[37] Steinbach, O., Numerical Approximation Methods for Elliptic Boundary Value Problems, (2008), Springer New York · Zbl 1153.65302
[38] Zhu, J. L.; Yuan, Z. Q., Boundary Element Analysis, (2009), Science Press Beijing
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.