×

Asymptotic analysis of microtubule-based transport by multiple identical molecular motors. (English) Zbl 1397.92167

Summary: We describe a system of stochastic differential equations (SDEs) which model the interaction between processive molecular motors, such as kinesin and dynein, and the biomolecular cargo they tow as part of microtubule-based intracellular transport. We show that the classical experimental environment fits within a parameter regime which is qualitatively distinct from conditions one expects to find in living cells. Through an asymptotic analysis of our system of SDEs, we develop a means for applying in vitro observations of the nonlinear response by motors to forces induced on the attached cargo to make analytical predictions for two parameter regimes that have thus far eluded direct experimental observation: (1) highly viscous in vivo transport and (2) dynamics when multiple identical motors are attached to the cargo and microtubule.

MSC:

92C37 Cell biology
92C40 Biochemistry, molecular biology
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)

References:

[1] Asencio, M., Hooker, G., Gao, H.O., Functional convolution models. Preprint.; Asencio, M., Hooker, G., Gao, H.O., Functional convolution models. Preprint. · Zbl 07257906
[2] Banting, G., Higgins, S.J. (Eds.), Essays in Biochemistry: Molecular Motors, vol. 35. Portland Press, London, 2000.; Banting, G., Higgins, S.J. (Eds.), Essays in Biochemistry: Molecular Motors, vol. 35. Portland Press, London, 2000.
[3] Beeg, J.; Klumpp, S.; Dimova, R.; Gracia, R.; Unger, E., Transport of beads by several kinesin motors, Biophys. J., 94, 2, 532-541, (2008)
[4] Block, S.M.; Goldstein, L.S.B.; Schnapp, B.J., Bead movement by single kinesin molecules studied with optical tweezers, Nature, 348, 348-352, (1990)
[5] Bouzat, S.; Falo, F., The influence of direct motor – motor interaction in models for cargo transport by a single team of motors, Phys. biol., 7, 046009, (2010)
[6] Campàs, O.; Kafri, Y.; Zeldovich, K.B.; Casademunt, J.; Joanny, J.-F., Collective dynamics of interacting molecular motors, Phys. rev. lett., 97, 3, 038101, (2006)
[7] Carter, N.J.; Cross, R.A., Mechanics of the kinesin step, Nature, 435, 7040, 308-312, (2005)
[8] Coppin, C.M.; Finer, J.T.; Spudich, J.A.; Vale, R.D., Detection of sub-8-nm movements of kinesin by high-resolution optical-trap microscopy, Proc. natl. acad. sci. USA, 93, 5, 1913, (1996)
[9] Driver, J.W.; Rogers, A.R.; Kenneth Jamison, D.; Das, R.K.; Kolomeisky, A.B.; Diehl, M.R., Coupling between motor proteins determines dynamic behaviors of motor protein assemblies, Phys. chem. chem. phys., 12, 35, 10398-10405, (2010)
[10] Elston, T.C.; Peskin, C.S., The role of protein flexibility in molecular motor function: coupled diffusion in a tilted periodic potential, SIAM J. appl. math., 60, 3, 842-867, (2000), (electronic) · Zbl 1008.92004
[11] Fallesen, T.L.; Macosko, J.C.; Holzwarth, G., Force – velocity relationship for multiple kinesin motors pulling a magnetic bead, Eur. biophys. J., 40, 9, 1071-1079, (2011)
[12] Fisher, M.E.; Kolomeisky, A.B., Simple mechanochemistry describes the dynamics of kinesin molecules, Proc. natl. acad. sci., 98, 14, 7748, (2001)
[13] Freidlin, M.I., Wentzell, A.D., 1998. Random perturbations of dynamical systems. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), second ed., vol. 260. Springer-Verlag, New York, 1998. (Translated from the 1979 Russian Original by Joseph Szücs).; Freidlin, M.I., Wentzell, A.D., 1998. Random perturbations of dynamical systems. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), second ed., vol. 260. Springer-Verlag, New York, 1998. (Translated from the 1979 Russian Original by Joseph Szücs). · Zbl 0922.60006
[14] Fricks, J.; Wang, H.; Elston, T.C., A numerical algorithm for investigating the role of the motor – cargo linkage in molecular motor-driven transport, J. theoret. biol., 239, 1, 33-48, (2006) · Zbl 1445.92107
[15] Gagliano, J.; Walb, M.; Blaker, B.; Macosko, J.C.; Holzwarth, G., Kinesin velocity increases with the number of motors pulling against viscoelastic drag, Eur. biophys. J., 39, 5, 801-813, (2010)
[16] Goldman, C., A hopping mechanism for cargo transport by molecular motors on crowded microtubules, J. statist. phys., 140, 1-15, (2010) · Zbl 1296.82038
[17] Gross, S.P.; Vershinin, M.; Shubeita, G.T., Cargo transport: two motors are sometimes better than one, Curr. biol., 17, 12, R478-R486, (2007)
[18] Guérin, T.; Prost, J.; Martin, P.; Joanny, J.-F., Coordination and collective properties of molecular motors: theory, Curr. opin. cell biol., 22, 1, 14-20, (2010), (Cell structure and dynamics)
[19] Guydosh, N.R.; Block, S.M., Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain, Proc. natl. acad. sci. USA, 103, 21, 8054-8059, (2006)
[20] Hancock, W.O., Howard, J. 2003. Kinesin: processivity and chemomechanical coupling. In: Molecular Motors. Wiley-VCH, Weinheim, Germany. pp. 243-269.; Hancock, W.O., Howard, J. 2003. Kinesin: processivity and chemomechanical coupling. In: Molecular Motors. Wiley-VCH, Weinheim, Germany. pp. 243-269.
[21] Hänggi, P.; Marchesoni, F., Artificial Brownian motors: controlling transport on the nanoscale, Rev. mod. phys., 81, 1, 387-442, (2009)
[22] Hariharan, V.; Hancock, W.O., Insights into the mechanical properties of the kinesin neck linker domain from sequence analysis and molecular dynamics simulations, Cell. mol. bioeng., 2, 2, 177-189, (2009)
[23] Hendricks, A.G.; Perlson, E.; Ross, J.L.; Schroeder III, H.W.; Tokito, M.; Holzbaur, E.L.F., Motor coordination via a Tug-of-War mechanism drives bidirectional vesicle transport, Current biology, 20, 8, 697-702, (2010)
[24] Hill, D.B.; Plaza, M.J.; Bonin, K.; Holzwarth, G., Fast vesicle transport in PC12 neurites: velocities and forces, Eur. biophys. J., 33, 7, 623-632, (2004)
[25] Hirokawa, N., Kinesin and dynein superfamily proteins and the mechanism of organelle transport, Science, 279, 5350, 519, (1998)
[26] Howard, J.; Hudspeth, A.J.; Vale, R.D., Movement of microtubules by single kinesin molecules, Nature, 342, 6246, 154-158, (1989)
[27] Hughes, J.; Hancock, W.O.; Fricks, J., A matrix computational approach to kinesin neck linker extension, Journal of theoretical biology, 269, 1, (2011) · Zbl 1307.92078
[28] Hughes, J., Hancock, W.O., Fricks, J., 2011b. Kinesins with Extended Neck Linkers: A Chemomechanical Model for Variable-Length Stepping. Bulletin of Mathematical Biology. October.; Hughes, J., Hancock, W.O., Fricks, J., 2011b. Kinesins with Extended Neck Linkers: A Chemomechanical Model for Variable-Length Stepping. Bulletin of Mathematical Biology. October. · Zbl 1251.92002
[29] Howard, J., Mechanics of motor proteins and the cytoskeleton, (2001), Sinauer Associates Sunderland, MA
[30] Jamison, D.K.; Drive, J.W.; Rogers, A.R.; Constantinou, P.E.; Diehl, M.R., Two kinesins transport cargo primarily via the action of one motor: implications for intracellular transport, Biophysical journal, 99, 2967-2977, (2010)
[31] Jülicher, F.; Ajdari, A.; Prost, J., Modeling molecular motors, Rev. mod. phys., 69, 4, 1269-1281, (1997)
[32] Kafri, Y.; Lubensky, D.K.; Nelson, D.R., Dynamics of molecular motors and polymer translocation with sequence heterogeneity, Biophys. J., 86, 3373-3391, (2004)
[33] Khasminskii, R.Z., On the principle of averaging in Ito’s stochastic differential equations, Kybernetika (Prague), 4, 260-279, (1968) · Zbl 0231.60045
[34] Kinderlehrer, D.; Kowalczyk, M., Diffusion-mediated transport and the flashing ratchet, Arch. ration. mech. anal., 161, 2, 149-179, (2002) · Zbl 1065.76183
[35] Klumpp, S.; Lipowsky, R., Cooperative cargo transport by several molecular motors, Proc. natl. acad. sci. USA, 102, 48, 17284, (2005)
[36] Kojima, H.; Muto, E.; Higuchi, H.; Yanagida, T., Mechanics of single kinesin molecules measured by optical trapping nanometry, Biophys. J., 73, 2012-2022, (1997)
[37] Kolomeisky, A.B.; Fisher, M.E., Molecular motors: a Theorist’s perspective, Ann. rev. phys. chem., 58, 1, 675-695, (2007)
[38] Korn, C.B.; Klumpp, S.; Lipowsky, R.; Schwarz, U.S., Stochastic simulations of cargo transport by processive molecular motors, J. chem. phys., 131, 245107, (2009)
[39] Kramer, P.R.; Latorre, J.C.; Khan, A.A., Two coarse-graining studies of stochastic models in molecular biology, Commun. math. sci., 8, 2, 481-517, (2010), (to appear in Commun. Math. Sci.) · Zbl 1195.92020
[40] Kunwar, A.; Mogilner, A., Robust transport by multiple motors with nonlinear force – velocity relations and stochastic load sharing, Phys. biol., 7, 016012, (2010)
[41] Kunwar, A.; Vershinin, M.; Xu, J.; Gross, S.P., Stepping, strain gating, and an unexpected force – velocity curve for multiple-motor-based transport, Curr. biol., 18, 16, 1173-1183, (2008)
[42] Kutoyants, Y.A., Statistical inference for ergodic diffusion processes, (2004), Springer-Verlag · Zbl 1038.62073
[43] Larson, A.G.; Landahl, E.C.; Rice, S.E., Mechanism of cooperative behaviour in systems of slow and fast molecular motors, Phys. chem. chem. phys., 11, 4890-4898, (2009)
[44] Lee DeVille, R.E.; Vanden-Eijnden, E., Regular gaits and optimal velocities for motor proteins, Biophys. J., 95, 2681-2691, (2008)
[45] Levi, V.; Gelfand, V.I.; Serpinskaya, A.S.; Gratton, E., Melanosomes transported by myosin-V in xenopus melanophores perform slow 35 nm steps, Biophys. J., 90, 1, L07-L09, (2006)
[46] Lin, C.C.; Segel, L.A., Mathematics applied to deterministic problems in the natural sciences, (1988), Society for Industrial and Applied Mathematics (SIAM) Philadelphia, PA, (With Material on Elasticity by G.H. Handelman, with a foreword by Robert E. O’Malley, Jr) · Zbl 0664.00026
[47] Lindner, B.; Kostur, M.; Schimansky-Geier, L., Optimal diffusive transport in a tilted periodic potential, Fluct. noise lett., 1, 1, R25-R39, (2001)
[48] Maes, C.; van Wieren, M.H., A Markov model for kinesin, J. statist. phys., 112, 1-2, 329-355, (2003) · Zbl 1016.92010
[49] Mitchell, C.S.; Lee, R.H., A quantitative examination of the role of cargo-exerted forces in axonal transport, J. theoret. biol., 257, 430-437, (2009) · Zbl 1400.92105
[50] Mogilner, A.; Elston, T.C.; Wang, H.; Oster, G., Molecular motors: theory, (), xx+468, (Chapter 12)
[51] Muhuri, S.; Pagonabarraga, I., Lattice-gas model for active vesicle transport by molecular motors with opposite polarities, Phys. rev. E, 82, 2, 021925, (2010)
[52] Müller, M.J.I.; Klumpp, S.; Lipowsky, R., Tug-of-War as a cooperative mechanism for bidirectional cargo transport by molecular motors, Proc. natl acad. sci. USA, 105, 12, 4609, (2008)
[53] Müller, M.J.I.; Klumpp, S.; Lipowsky, R., Motility states of molecular motors engaged in a stochastic Tug-of-War, J. statist. phys., 133, 6, 1059-1081, (2008) · Zbl 1161.82348
[54] Müller, M.J.I.; Klumpp, S.; Lipowsky, R., Bidirectional transport by molecular motors: enhanced processivity and response to external forces, Biophys. J., 98, 11, 2610-2618, (2010)
[55] Muthukrishnan, G.; Zhang, Y.; Shastry, S.; Hancock, W.O., The processivity of kinesin-2 motors suggests diminished front-head gating, Curr. biol., 19, 5, 442-447, (2009)
[56] Muthukrishnan, G.; Zhang, Y.; Shastry, S.; Hancock, W., The processivity of kinesin-2 motors suggests diminished front-head gating, Curr. biol., 19, 5, 442-447, (2009)
[57] Novozhilov, I.V., Fractional analysis, (1997), Birkhäuser Boston Inc. Boston, MA, (Methods of Motion Decomposition, Translation of the 1991 Russian Original) · Zbl 0870.65058
[58] Oster, G.; Peskin, C.S., Coordinated hydrolysis explains the mechanical behavior of kinesin, Biophys. J., 68, 4 Suppl., 202S, (1995)
[59] Pavliotis, G.A., A multiscale approach to Brownian motors, Phys. lett. A, 344, 331-345, (2005) · Zbl 1194.60057
[60] Perkins, T.T., Optical traps for a single molecule biophysics: a primer, Laser photon. rev., 3, 1-2, 203-220, (2009)
[61] Peskin, C.S.; Ermentrout, G.B.; Oster, G.F., The correlation ratchet: a novel mechanism for generating directed motion by atp hydrolysis, (), 479-489
[62] Posta, F.; D’Orsogna, M.R.; Chou, T., Enhancement of cargo processivity by cooperating molecular motors, Phys. chem. chem. phys., 11, 4851-4860, (2009)
[63] Qian, H., The mathematical theory of molecular motor movement and chemomechanical energy transduction, J. math. chem., 27, 3, 219-234, (2000) · Zbl 1008.92014
[64] Reimann, P., Brownian motors: noisy transport far from equilibrium, Phys. rep., 361, 57, (2002) · Zbl 1001.82097
[65] Rogers, A.R.; Driver, J.W.; Constantinou, P.E.; Jamison, D.K.; Diehl, M.R., Negative interference dominates collective transport of kinesin motors in the absence of load, Phys. chem. chem. phys., 11, 24, 4882-4889, (2009)
[66] Schnitzer, M.; Visscher, K.; Block, S., Force production by single kinesin motors, Nat. cell biol., (2000)
[67] Shastry, S.; Hancock, W., Neck-linker length is a critical determinant of kinesin processivity, Biophys. J., 98, 369, (2010)
[68] Shastry, S.; Hancock, W.O., Neck linker length determines the degree of processivity in kinesin-1 and kinesin-2 motors, Curr. biol., 20, 10, 939-943, (2010)
[69] Shtridelman, Y.; Cahyuti, T.; Townsend, B.; DeWitt, D.; Macosko, J.C., Force – velocity curves of motor proteins cooperating in vivo, Cell biochem. biophys., 52, 1, 19-29, (2008)
[70] Shtridelman, Y.; Holzwarth, G.M.; Bauer, C.T.; Gassman, N.R.; DeWitt, D.A.; Macosko, J.C., In vivo multimotor force – velocity curves by tracking and sizing sub-diffraction limited vesicles, Cell. mol. bioeng., 2, 190-199, (2009)
[71] Shubeita, G.; Tran, S.; Xu, J.; Vershinin, M.; Cermelli, S.; Cotton, S.; Welte, M.; Gross, S., Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets, Cell, 135, 1098-1107, (2008)
[72] Skorokhod, A.V., Hoppensteadt, F.C., Salehi, H., 2002. Random perturbation methods with applications in science and engineering. Applied Mathematical Sciences, vol. 150. Springer-Verlag, New York.; Skorokhod, A.V., Hoppensteadt, F.C., Salehi, H., 2002. Random perturbation methods with applications in science and engineering. Applied Mathematical Sciences, vol. 150. Springer-Verlag, New York. · Zbl 0998.37001
[73] Vershinin, M.; Carter, B.C.; Razafsky, D.S.; King, S.J.; Gross, S.P., Multiple-motor based transport and its regulation by tau, Proc. natl. acad. sci., 104, 1, 87, (2007)
[74] Visscher, K.; Schnitzer, M.; Block, S., Single kinesin molecules studied with a molecular force clamp, Nature, (1999)
[75] Wang, H., A new derivation of the randomness parameter, J. math. phys., 48, 10, 103301, (2007) · Zbl 1152.81628
[76] Wang, H., Several issues in modeling molecular motors, J. comput. theoret. nanosci., 5, 2311-2345, (2008)
[77] Wang, H.; Elston, T.C., Mathematical and computational methods for studying energy transduction in protein motors, J. statist. phys., 128, 1-2, 35-76, (2007) · Zbl 1117.82057
[78] Wang, H.; Peskin, C.S.; Elston, T.C., A robust numerical algorithm for studying biomolecular transport processes, J. theoret. biol., 221, 4, 491-511, (2003) · Zbl 1464.92119
[79] Wang, Z.; Li, M., Force – velocity relations for multiple-molecular-motor transport, Phys. rev. E, 80, 4, 041923, (2009)
[80] Yildiz, A.; Tomishige, M.; Gennerich, A.; Vale, R.D., Intramolecular strain coordinates kinesin stepping behavior along microtubules, Cell, 134, 6, 1030-1041, (2008)
[81] Zhang, Y.; Fisher, M.E., Dynamics of the Tug-of-War model for cellular transport, Phys. rev. E, 82, 1, 011923, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.