×

Continuous distributions arising from the three gap theorem. (English) Zbl 1396.11041

Summary: The well-known Three Gap Theorem states that there are at most three gap sizes in the sequence of fractional parts \( \{\alpha n\}_{n<N}\). It is known that if one averages over \(\alpha\), the distribution becomes continuous. We present an alternative approach, which establishes this averaged result and also provides good bounds for the error terms.

MSC:

11B57 Farey sequences; the sequences \(1^k, 2^k, \dots\)
11K36 Well-distributed sequences and other variations
11J71 Distribution modulo one

References:

[1] 1. G. I. Arhipov and A. A. Karacuba, Čubarikov, V. N. Distribution of fractional parts of polynomials of several variables, Mat. Zametki25(1) (1979) 3-14 (in Russian).
[2] 2. V. Augustin, F. P. Boca, C. Cobeli and A. Zaharescu, The h-spacing distribution between Farey points, Math. Proc. Cambridge Philos. Soc.131 (2001) 23-38. genRefLink(16, ’S1793042116501074BIB002’, ’10.1017 · Zbl 1161.11312
[3] 3. R. C. Baker and G. Harman, Small fractional parts of polynomials, in Topics in Classical Number Theory, Vols. 1 and 2, Colloquia Mathematica Societatis Jànos Bolyai, Vol. 34 (North-Holland, Amsterdam, 1984), pp. 69-110.
[4] 4. P. M. Bleher, The energy level spacing for two harmonic oscillators with generic ratio of frequencies. J. Statist. Phys.63 (1991) 261-283. genRefLink(16, ’S1793042116501074BIB004’, ’10.1007
[5] 5. F. P. Boca, C. Cobeli and A. Zaharescu, A conjecture of R. R. Hall on Farey points, J. Reine Angew. Math.535 (2001) 207-236. genRefLink(16, ’S1793042116501074BIB005’, ’10.1515
[6] 6. F. Boca and A. Zaharescu, Pair correlation of values of rational functions (mod p), Duke Math. J.105 (2000) 267-307. genRefLink(16, ’S1793042116501074BIB006’, ’10.1215
[7] 7. C. Cobeli, G. Groza, M. Vâjâitu and A. Zaharescu, Generalization of a theorem of Steinhaus, Colloq. Math.92(2) (2002) 257-266. genRefLink(16, ’S1793042116501074BIB007’, ’10.4064 · Zbl 1006.11040
[8] 8. M. J. de Velasco, Distribution of the fractional parts of polynomials, Bull. Calcutta Math. Soc.90(6) (1998) 459-464. · Zbl 0978.11031
[9] 9. A. Dubickas, On the fractional parts of rational powers, Int. J. Number Theory5(6) (2009) 1037-1048. [Abstract] genRefLink(128, ’S1793042116501074BIB009’, ’000270697700007’); · Zbl 1228.11104
[10] 10. A. Dubickas, On the limit points of the fractional parts of powers of Pisot numbers, Arch. Math. (Brno)42(2) (2006) 151-158. · Zbl 1164.11026
[11] 11. C. Greenman, The generic spacing distribution of the two-dimensional harmonic oscillator, J. Phys. A29 (1996) 4065-4081. genRefLink(16, ’S1793042116501074BIB011’, ’10.1088 · Zbl 0905.58007
[12] 12. G. Groza, M. Vâjâitu and A. Zaharescu, Primitive arcs on elliptic curves, Rev. Roumaine Math. Pures Appl.50(1) (2005) 31-38. · Zbl 1102.11037
[13] 13. R. R. Hall, A note on Farey series, J. London Math. Soc.2 (1970) 139-148. genRefLink(16, ’S1793042116501074BIB013’, ’10.1112
[14] 14. R. R. Hall, On consecutive Farey arcs II, Acta Arithm.66 (1994) 1-9. genRefLink(128, ’S1793042116501074BIB014’, ’A1994ND96500001’); · Zbl 0831.11022
[15] 15. R. R. Hall and G. Tenenbaum, On consecutive Farey arcs, Acta Arith.44 (1984) 397-405. genRefLink(128, ’S1793042116501074BIB015’, ’A1984AFV4200009’); · Zbl 0553.10011
[16] 16. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th edn. (Oxford University Press, New York, 1979). · Zbl 0423.10001
[17] 17. A. A. Karacuba, Distribution of fractional parts of polynomials of a special type, Vestnik Moskov. Univ. Ser. I Mat. Meh.1962(3) (1962) 34-39 (in Russian).
[18] 18. Ě. I. Kovalevskaja, The simultaneous distribution of the fractional parts of polynomials, Vesci Akad. Navuk BSSR Ser. Fǐz.-Mat. Navuk1971(5) (1971) 13-23 (in Russian).
[19] 19. W. L. LeVeque, Fundamentals of Number Theory (Addison-Wesley Publishing Co., Reading, MA, 1977). · Zbl 0368.10001
[20] 20. A. E. Mazel and Ya. G. Sinai, A limiting distribution connected with fractional parts of linear forms. in Ideas and Methods in Mathematical Analysis, Stochastics and Applications, Vol. 1, eds. S. Albeverio et al. (Cambridge University Press, Cambridge, 1992), pp. 220-229. · Zbl 0762.60020
[21] 21. G. Misevičius and S. Vakrinieně, On uniform distribution on [0, 1] of fractional parts of powers of real algebraic numbers, Šiauliai Math. Semin.4(12) (2009) 145-149.
[22] 22. N. G. Moshchevitin, On small fractional parts of polynomials, J. Number Theory129(2) (2009) 349-357. genRefLink(16, ’S1793042116501074BIB022’, ’10.1016 · Zbl 1228.11103
[23] 23. K. O’Bryant, Sturmian words and the permutation that orders fractional parts, J. Algebraic Combin.19(1) (2004) 91-115. genRefLink(16, ’S1793042116501074BIB023’, ’10.1023
[24] 24. F. Pillichshammer, Euler’s constant and averages of fractional parts, Amer. Math. Monthly117(1) (2010) 78-83. genRefLink(16, ’S1793042116501074BIB024’, ’10.4169
[25] 25. Z. Rudnick and P. Sarnak, The pair correlation function of fractional parts of polynomials, Comm. Math. Phys.194 (1998) 61-70. genRefLink(16, ’S1793042116501074BIB025’, ’10.1007
[26] 26. Z. Rudnick, P. Sarnak and A. Zaharescu, The distribution of spacings between the fractional parts of n2{\(\alpha\)}, Invent. Math.145(1) (2001) 37-57. genRefLink(16, ’S1793042116501074BIB026’, ’10.1007 · Zbl 1006.11041
[27] 27. Z. Rudnick and A. Zaharescu, The distribution of spacings between fractional parts of lacunary sequences, Forum Math.14(5) (2002) 691-712. genRefLink(16, ’S1793042116501074BIB027’, ’10.1515 · Zbl 1168.11317
[28] 28. W. M. Schmidt, Small Fractional Parts of Polynomials, Regional Conference Series in Mathematics, No. 32 (American Mathematical Society, Providence, RI, 1977).
[29] 29. V. T. Sós, On the distribution mod 1 of the sequence n{\(\alpha\)}, Ann. Univ. Sci. Budapest Eötvös Sect. Math.1 (1958) 127-134. · Zbl 0094.02903
[30] 30. S. Świerczkowski, On successive settings of an arc on the circumference of a circle, Fund. Math.46 (1958) 187-189. · Zbl 0085.27203
[31] 31. T. van Ravenstein, The three gap theorem (Steinhaus conjecture), J. Austral. Math. Soc. Ser. A45 (1988) 360-370. genRefLink(16, ’S1793042116501074BIB031’, ’10.1017 · Zbl 0663.10039
[32] 32. T. D. Wooley, The application of a new mean value theorem to the fractional parts of polynomials, Acta Arith.65(2) (1993) 163-179. genRefLink(128, ’S1793042116501074BIB032’, ’A1993MF42000005’); · Zbl 0789.11037
[33] 33. A. Zaharescu, Correlation of fractional parts of n2{\(\alpha\)}, Forum Math.15(1) (2003) 1-21. genRefLink(16, ’S1793042116501074BIB033’, ’10.1515
[34] 34. T. Zaimi, On integer and fractional parts of powers of Salem numbers, Arch. Math. (Basel)87(2) (2006) 124-128. genRefLink(16, ’S1793042116501074BIB034’, ’10.1007 · Zbl 1182.11052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.