×

On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains. (English) Zbl 1393.35030

Authors’ abstract: The purpose of this paper is to study the mixed Dirichlet-Neumann boundary value problem for the semilinear Darcy-Forchheimer-Brinkman system in \(L_p\)-based Besov spaces on a bounded Lipschitz domain in \(\mathbb{R}^3\), with \(p\) in a neighborhood of 2. This system is obtained by adding the semilinear term \(|u|u\) to the linear Brinkman equation. First, we provide some results about equivalence between the Gagliardo and nontangential traces, as well as between the weak canonical conormal derivatives and the nontangential conormal derivatives. Various mapping and invertibility properties of some integral operators of potential theory for the linear Brinkman system, and well-posedness results for the Dirichlet and Neumann problems in \(L_p\)-based Besov spaces on bounded Lipschitz domains in \(\mathbb{R}^n (n \geq 3)\) are also presented. Then, using integral potential operators, we show the well-posedness in \(L_2\)-based Sobolev spaces for the mixed problem of Dirichlet-Neumann type for the linear Brinkman system on a bounded Lipschitz domain in \(\mathbb{R}^n\) (\(n \geq 3\)). Further, by using some stability results of Fredholm and invertibility properties and exploring invertibility of the associated Neumann-to-Dirichlet operator, we extend the well-posedness property to some \(L_p\)-based Sobolev spaces. Next, we use the well-posedness result in the linear case combined with a fixed point theorem to show the existence and uniqueness for a mixed boundary value problem of Dirichlet and Neumann type for the semilinear Darcy-Forchheimer-Brinkman system in \(L_p\)-based Besov spaces, with \(p \in (2-\varepsilon,2+\varepsilon)\) and some parameter \(\varepsilon>0\).

MSC:

35J25 Boundary value problems for second-order elliptic equations
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] BăcuţăC, HassellME, HsiaoGC, SayasF‐J. Boundary integral solvers for an evolutionary exterior Stokes problem. SIAM J Numer Anal. 2015;53:1370‐1392. · Zbl 1316.65082
[2] CostabelM. Boundary integral operators on Lipschitz domains: elementary results. SIAM J Math Anal. 1988;19:613‐626. · Zbl 0644.35037
[3] Dindos˘M, MitreaM. The stationary Navier‐Stockes system in nonsmooth manifolds: the Poisson problem in Lipschitz and C^1 domains. Arch Rational Mech Anal. 2004;174:1‐47. · Zbl 1059.76014
[4] MedkováD. Transmission problem for the Brinkman system. Complex Var Elliptic Equ. 2014;59:1664‐1678. · Zbl 1302.35322
[5] MitreaM, TaylorM. Navier‐Stokes equations on Lipschitz domains in Riemannian manifolds. Math Ann. 2001;321:955‐987. · Zbl 1039.35079
[6] FabesE, KenigC, VerchotaG. The Dirichlet problem for the Stokes system on Lipschitz domains. J Duke Math. 1988;57:769‐793. · Zbl 0685.35085
[7] MitreaM, WrightM. Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque. 2012;344:viii+241. · Zbl 1345.35076
[8] MitreaI, MitreaM. The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non‐smooth domains. Trans Amer Math Soc. 2007;359:4143‐4182. · Zbl 1190.35063
[9] BrownRM. The mixed problem for Laplace’s equation in a class of Lipschitz domains. Comm Partial Diff Eqns. 1994;19:1217‐1233. · Zbl 0831.35043
[10] BrownRM, MitreaI, MitreaM, WrightM. Mixed boundary value problems for the Stokes system. Trans Amer Math Soc. 2010;362:1211‐1230. · Zbl 1187.35038
[11] BrownRM, MitreaI. The mixed problem for the Lamé system in a class of Lipschitz domains. J Diff Equ. 2009;246:2577‐2589. · Zbl 1165.35008
[12] CostabelM, StephanE. Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation. Math Models Methods Mech. 1985;15:175‐251. · Zbl 0655.65129
[13] ChkaduaO, MikhailovSE, NatroshviliD. Analysis of direct boundary‐domain integral equations for a mixed BVP with variable coeffcient, I: equivalence and invertibility. J Integral Equations Appl. 2009;21:499‐543. · Zbl 1204.65139
[14] ChkaduaO, MikhailovSE, NatroshviliD. Analysis of direct segregated boundary‐domain integral equations for variable‐coefficient mixed BVPs in exterior domains. Anal Appl. 2013;11(4):1350006. · Zbl 1273.45007
[15] ChkaduaO, MikhailovSE, NatroshviliD. Analysis of segregated boundary‐domain integral equations for variable‐coefficient problems with cracks. Numer Methods Partial Differ Equ. 2011;27:121‐140. · Zbl 1208.65174
[16] MikhailovSE. Analysis of united boundary‐domain integro‐differential and integral equations for a mixed BVP with variable coefficient. Math Methods Appl Sci. 2006;29:715‐739. · Zbl 1146.35031
[17] CakoniF, HsiaoGC, WendlandWL. On the boundary integral equation method for a mixed boundary value problem of the biharmonic equation. Complex Var. 2005;50:681‐696. · Zbl 1125.35032
[18] KohrM, Lanza de CristoforisM, WendlandWL. Nonlinear Neumann‐transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potential Anal. 2013;38:1123‐1171. · Zbl 1269.47053
[19] KohrM, Lanza de CristoforisM, WendlandWL. Poisson problems for semilinear Brinkman systems on Lipschitz domains in \(\mathbb{R}^3\). Z Angew Math Phys. 2015;66:833‐864. · Zbl 1323.35031
[20] KohrM, Lanza de CristoforisM, WendlandWL. Boundary value problems of Robin type for the Brinkman and Darcy‐Forchheimer‐Brinkman systems in Lipschitz domains. J Math Fluid Mech. 2014;16:595‐630. · Zbl 1334.35052
[21] KohrM, Lanza de CristoforisM, WendlandWL. 2014. Nonlinear Darcy‐Forchheimer‐Brinkman system with linear Robin boundary conditions in Lipschitz domains. In Complex Analysis and Potential Theory, Aliev AzerogluT (ed.), GolbergA (ed.), RogosinS (ed.) (eds).Cambridge Scientific Publishers, Cottenham, UK; 111‐124. ISBN 978‐1‐908106‐40‐7. · Zbl 1354.35031
[22] KohrM, Lanza de CristoforisM, WendlandWL. On the Robin‐transmission boundary value problems for the nonlinear Darcy‐Forchheimer‐Brinkman and Navier‐Stokes systems. J Math Fluid Mech. 2016;18:293‐329. · Zbl 1343.35088
[23] KohrM, Lanza de CristoforisM, MikhailovSE, WendlandWL. Integral potential method for transmission problem with Lipschitz interface in \(\mathbb{R}^3\) for the Stokes and Darcy‐Forchheimer‐Brinkman PDE systems. Z Angew Math Phys. 2016;67:166(5):1‐30. · Zbl 1368.35096
[24] KohrM, MikhailovSE, WendlandWL. Transmission problems for the Navier‐Stokes and Darcy‐Forchheimer‐Brinkman systems in Lipschitz domains on compact Riemannian manifolds. J Math Fluid Mech. 2017;19:203‐238. · Zbl 1464.58007
[25] Dindos˘M, MitreaM. Semilinear Poisson problems in Sobolev‐Besov spaces on Lipschitz domains. Publ Math. 2002;46:353‐403. · Zbl 1058.35073
[26] RussoR, TartaglioneA. On the Robin problem for Stokes and Navier‐Stokes systems. Math Models Methods Appl Sci. 2006;19:701‐716. · Zbl 1096.76013
[27] RussoR, TartaglioneA. On the Navier problem for stationary Navier‐Stokes equations. J Diff Equ. 2011;251:2387‐2408. · Zbl 1261.76010
[28] Maz’yaV, RossmannJ. Lp estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains. Math Nachr. 2007;280:751‐793. · Zbl 1187.35157
[29] TaylorJL, OttKA, BrownRM. The mixed problem in Lipschitz domains with general decompositions of the boundary. Trans Amer Math Soc. 2013;365:2895‐2930. · Zbl 1275.35092
[30] NieldDA, BejanA. Convection in Porous Media (3rd edn.) Springer: New York, 2013. · Zbl 1268.76001
[31] GroşanT, KohrM, WendlandWL. Dirichlet problem for a nonlinear generalized Darcy‐Forchheimer‐Brinkman system in Lipschitz domains. Math Meth Appl Sci. 2015;38:3615‐3628. · Zbl 1336.35138
[32] GuttR, GroşanT. On the Lid‐driven problem in a porous cavity. A numerical approach. Appl Math Comput. 2015;266:1070‐1082. · Zbl 1410.76428
[33] MikhailovSE. Localized direct boundary‐domain integro‐differential formulations for scalar nonlinear boundary‐value problems with variable coefficients. J Eng Math. 2005;51:283‐302. · Zbl 1073.65136
[34] MikhailovSE. Direct localized boundary‐domain integro‐differential formulations for physically nonlinear elasticity of inhomogeneous body. Engng Anal Bound Elem. 2005;29:1008‐1015. · Zbl 1182.74230
[35] MitreaI, MitreaM.Multi‐Layer Potentials and Boundary Problems for Higher‐Order Elliptic Systems in Lipschitz Domains. Springer: Heidelberg, 2013. · Zbl 1268.35001
[36] MedkováD. L^q‐solution of the Robin problem for the Oseen system. Acta Appl Math. 2016;142:61‐79. · Zbl 1334.35247
[37] NečasJ. Direct Methods in the Theory of Elliptic Equations. Springer: Berlin, Heidelberg, 2012. [English translation of Les Methodes Directes en Théorie des Équations Elliptique. Masson, Paris, 1967.] · Zbl 1225.35003
[38] VerchotaG. Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J Funct Anal. 1984;59:572‐611. · Zbl 0589.31005
[39] MitreaD, MitreaM, PipherJ. Vector potential theory on nonsmooth domains in \(\mathbb{R}^3\) and applications to electromagnetic scattering. J Fourier Anal Appl. 1997;3:131‐192. · Zbl 0877.35124
[40] McLeanW. Elliptic Systems and Boundary Integral Equations. Cambridge University Press: Cambridge, UK, 2000. · Zbl 0948.35001
[41] JerisonDS, KenigC. The inhomogeneous Dirichlet problem in Lipschitz domains. J Funct Anal. 1995;130:161‐219. · Zbl 0832.35034
[42] FabesE, MendezO, MitreaM. Boundary layers on Sobolev‐Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J Funct Anal. 1998;159:323‐368. · Zbl 0930.35045
[43] MitreaM, TaylorM. Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev‐Besov space results and the Poisson problem. J Funct Anal. 2000;176:1‐79. · Zbl 0968.58023
[44] JonssonA, WallinH.Function spaces on subsets of \(\mathbb{R}^n\). Harwood Academic Publishers: Chur, London, Paris, Utrecht, New York, 1984. · Zbl 0875.46003
[45] BrewsterK, MitreaD, MitreaI, MitreaM. Extending Sobolev functions with partially vanishing traces from locally (ε,δ)−domains and applications to mixed boundary problems. J Functional Analysis. 2014;266:4314‐4421. · Zbl 1312.46042
[46] AgranovichMS. Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains. Springer: Heidelberg, 2015. · Zbl 1322.46002
[47] HsiaoGC, WendlandWL. Boundary Integral Equations. Springer‐Verlag: Heidelberg, 2008.
[48] TriebelH. Theory of Function Spaces. Basel: Birkhäuser, 1983. · Zbl 0546.46027
[49] TriebelH. Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers. Rev Mat Complut. 2002;15:475‐524. · Zbl 1034.46033
[50] MikhailovSE. Traces, extensions and co‐normal derivatives for elliptic systems on Lipschitz domains. J Math Anal Appl. 2011;378:324‐342. · Zbl 1216.35029
[51] MikhailovSE. Solution regularity and co‐normal derivatives for elliptic systems with non‐smooth coefficients on Lipschitz domains. J Math Anal Appl. 2013;400:48‐67. · Zbl 1308.35086
[52] McCrackenM. The resolvent problem for the Stokes equations on half‐space in \(L_p^\ast \). SIAM J Math Anal. 1981;12:201‐228. · Zbl 0475.35073
[53] KohrM, PopI.Viscous Incompressible Flow for Low Reynolds Numbers. WIT Press: Southampton (UK), 2004. · Zbl 1064.76001
[54] VarnhornW. The Stokes Equations. Akademie Verlag: Berlin, 1994. · Zbl 0813.35085
[55] MikhlinSG. Multidimensional Singular Integrals and Integral Equations. Pergamon: Oxford, 1965. · Zbl 0129.07701
[56] DeuringP. The Resolvent problem for the Stokes system in exterior domains: an elementary approach. Math Meth Appl Sci. 1990;13:335‐349. · Zbl 0726.35099
[57] BuffaA, GeymonatG. On traces of functions in W^2,p(Ω) for Lipschitz domains in \(\mathbb{R}^3\). C R Acad Sci Paris Série I. 2001;332:699‐704. · Zbl 0987.46036
[58] ShenZ. Resolvent estimates in L^p for the Stokes operator in Lipschitz domains. Arch. Rational Mech. Anal.2012;205:395‐424. · Zbl 1320.76029
[59] MedkováD. Bounded solutions of the Dirichlet problem for the Stokes resolvent system. Complex Var Elliptic Equ. 2016;61:1689‐1715. · Zbl 1347.35204
[60] KohrM, MedkováD, WendlandWL. On the Oseen‐Brinkman flow around an (m‐1)‐dimensional solid obstacle. Monatsh Math. 2017;183:269‐302. · Zbl 1380.35078
[61] ChoeHJ, KimH. Dirichlet problem for the stationary Navier‐Stokes system on Lipschitz domains. Commun Partial Differ Equ. 2011;36:1919‐1944. · Zbl 1236.35102
[62] MitreaI, MitreaM, WrightM.Optimal estimates for the inhomogeneous problem for the bi‐Laplacian in three‐dimensional Lipschitz domains. J Math Sci. (New York). 2011;172:24‐134. · Zbl 1238.35024
[63] HofmannS, MitreaM, TaylorM. Symbol calculus for operators of layer potential type on Lipschitz surfaces with VMO normals, and related pseudodifferential operator calculus. Analysis & PDE. 2015;8:115‐181. · Zbl 1317.31012
[64] MitreaD, MitreaM, TaylorM. Layer potentials, the Hodge Laplacian and global boundary problems in non‐smooth Riemannian manifolds. Memoirs of the American Mathematical Society. 2001;150(713):vii+120. · Zbl 1003.35001
[65] BehzadanA, HolstM. Multiplication in Sobolev spaces. Revisited. ArXiv:1512.07379v1.
[66] BerghJ., LöfströmJ. Interpolation Spaces, An Introduction. Springer‐Verlag: Berlin, 1976. · Zbl 0344.46071
[67] ToftJ.Continuity properties for modulation spaces, with applications to pseudo‐differential calculus ‐ I. J Funct Anal. 2004;207:399‐429. · Zbl 1083.35148
[68] CaoW, SagherY. Stability of Fredholm properties on interpolation scales. Ark Mat. 1990;28:249‐258. · Zbl 0753.46036
[69] RunstT, SickelW. Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. Walter de Gruyter: Berlin, 1996. · Zbl 0873.35001
[70] AmroucheC, Rodríguez‐BellidoMA. Stationary Stokes, Oseen and Navier‐Stokes equations with singular data. Arch Rational Mech Anal. 2011;199:597‐651. · Zbl 1229.35164
[71] CoifmanR, McIntoshA, MeyerY.L’Intégrale de Cauchy définit un opérateur borné sur L^2 pour les courbes Lipschitziennes [The Cauchy integral defines a bounded operator on L^2 for Lipschitz curves]. Ann Math. 1982;116:361‐387. · Zbl 0497.42012
[72] KenigCE. Recent progress on boundary value problems on Lipschitz domains pseudodifferential operators and applications. Proc Symp Pure Math. 1985;43:175‐205. · Zbl 0593.35038
[73] LanzaniL, CapognaL, BrownLRM. The mixed problem in L^p for some two‐dimentional Lipschitz domains. Math Ann. 2008;342:91‐124. · Zbl 1180.35203
[74] MikhailovSE. Analysis of segregated boundary‐domain integral equations for variable‐coefficient Dirichlet and Neumann problems with general data. ArXiv:1509.03501. 2015:1‐32.
[75] MitreaM, MonniauxS, WrightM. The Stokes operator with Neumann boundary conditions in Lipschitz domains. J Math Sci. (New York). 2011;176:409‐457. · Zbl 1290.35189
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.