×

Spinor fields, singular structures, charge conjugation, ELKO and neutrino masses. (English) Zbl 1392.81233

Summary: In this paper, we consider the most general treatment of spinor fields, their kinematic classification and the ensuing dynamic polar reduction, for both classes of regular and singular spinors; specifying onto the singular class, we discuss features of the corresponding field equations, taking into special account the sub-classes of Weyl and Majorana spinors; for the latter case, we study the condition of charge-conjugation, presenting a detailed introduction to a newly-defined type of spinor, that is the so-called ELKO spinor: at the end of our investigation, we will assess how all elements will concur to lay the bases for a simple proposal of neutrino mass generation.

MSC:

81V15 Weak interaction in quantum theory
81R25 Spinor and twistor methods applied to problems in quantum theory
15A66 Clifford algebras, spinors

References:

[1] Abłamowicz, R; Gonçalves, I; Rocha, R, Bilinear covariants and spinor fields duality in quantum Clifford algebras, J. Math. Phys., 55, 103501, (2014) · Zbl 1302.81113 · doi:10.1063/1.4896395
[2] Ahluwalia, DV, The theory of local mass dimension one fermions of spin one half, Adv. Appl. Clifford Algebra, 27, 2247, (2017) · Zbl 1386.81150 · doi:10.1007/s00006-017-0775-1
[3] Ahluwalia, DV; Grumiller, D, Dark matter: a spin one half fermion field with mass dimension one?, Phys. Rev. D, 72, 067701, (2005) · doi:10.1103/PhysRevD.72.067701
[4] Ahluwalia, DV; Grumiller, D, Spin half fermions with mass dimension one: theory, phenomenology, and dark matter, JCAP, 0507, 012, (2005) · doi:10.1088/1475-7516/2005/07/012
[5] Bernardini, AE, Chiral oscillations in terms of the Zitterbewegung effect, Eur. Phys. J. C, 50, 673, (2007) · doi:10.1140/epjc/s10052-007-0222-x
[6] Bernardini, AE; Leo, SD, Flavor and chiral oscillations with Dirac wave packets, Phys. Rev. D, 71, 076008, (2005) · doi:10.1103/PhysRevD.71.076008
[7] Bernardini, AE; Rocha, R, Obtaining the equation of motion for a fermionic particle in a generalized Lorentz-violating system framework, EPL, 81, 40010, (2008) · doi:10.1209/0295-5075/81/40010
[8] Bernardini, AE; Rocha, R, Dynamical dispersion relation for ELKO dark spinor fields, Phys. Lett. B, 717, 238, (2012) · doi:10.1016/j.physletb.2012.09.004
[9] Cavalcanti, RT, Classification of singular spinor fields and other mass dimension one fermions, Int. J. Mod. Phys. D, 23, 1444002, (2014) · Zbl 1310.81084 · doi:10.1142/S0218271814440027
[10] Cavalcanti, RT; Hoff da Silva, JM; Rocha, R, VSR symmetries in the DKP algebra: the interplay between Dirac and Elko spinor fields, Eur. Phys. J. Plus, 129, 246, (2014) · doi:10.1140/epjp/i2014-14246-4
[11] Cianci, R; Fabbri, L; Vignolo, S, Exact solutions for Weyl fermions with gravity, Eur. Phys. J. C, 75, 478, (2015) · doi:10.1140/epjc/s10052-015-3698-9
[12] Cianci, R; Fabbri, L; Vignolo, S, Critical exact solutions for self-gravitating Dirac fields, Eur. Phys. J. C, 76, 595, (2016) · doi:10.1140/epjc/s10052-016-4428-7
[13] Coronado Villalobos, CH; Hoff da Silva, JM; Rocha, R, Questing mass dimension 1 spinor fields, Eur. Phys. J. C, 75, 266, (2015) · doi:10.1140/epjc/s10052-015-3498-2
[14] Fabbri, L.: General dynamics of spinors. arXiv:1707.03270 · Zbl 1379.81043
[15] Fabbri, L, A discussion on the most general torsion-gravity with electrodynamics for Dirac spinor matter fields, Int. J. Geom. Methods. Mod. Phys., 12, 1550099, (2015) · Zbl 1327.83217 · doi:10.1142/S0219887815500991
[16] Fabbri, L, A generally-relativistic gauge classification of the Dirac fields, Int. J. Geom. Meth. Mod. Phys., 13, 1650078, (2016) · Zbl 1344.83034 · doi:10.1142/S021988781650078X
[17] Hoff da Silva, J.M., da Rocha, R.: From Dirac action to ELKO action. Int. J. Mod. Phys. A 24, 3227 (2009) · Zbl 1168.83341
[18] Hoff da Silva, JM; Rocha, R, Unfolding physics from the algebraic classification of spinor fields, Phys. Lett. B, 718, 1519, (2013) · Zbl 1372.81091 · doi:10.1016/j.physletb.2012.12.026
[19] Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (2001) · Zbl 0973.15022 · doi:10.1017/CBO9780511526022
[20] Rocha, R; Cavalcanti, RT, Flag-dipole and flagpole spinor fluid flows in Kerr spacetimes, Phys. Atom. Nucl., 80, 329, (2017) · doi:10.1134/S1063778817020235
[21] Rocha, R; Hoff da Silva, JM, From Dirac spinor fields to ELKO, J. Math. Phys., 48, 123517, (2007) · Zbl 1153.81455 · doi:10.1063/1.2825840
[22] Rocha, R; Hoff da Silva, JM, ELKO, flagpole and flag-dipole spinor fields, and the instanton Hopf fibration, Adv. Appl. Clifford Algebra, 20, 847, (2010) · Zbl 1202.81237 · doi:10.1007/s00006-010-0225-9
[23] Rocha, R; Pereira, JG, The quadratic spinor Lagrangian, axial torsion current, and generalizations, Int. J. Mod. Phys. D, 16, 1653, (2007) · Zbl 1200.83089 · doi:10.1142/S0218271807010900
[24] Rocha, R; Bernardini, AE; Hoff da Silva, JM, Exotic dark spinor fields, JHEP, 1104, 110, (2011) · doi:10.1007/JHEP04(2011)110
[25] Rocha, R; Fabbri, L; Hoff da Silva, JM; Cavalcanti, RT; Silva-Neto, JA, Flag-dipole spinor fields in ESK gravities, J. Math. Phys., 54, 102505, (2013) · Zbl 1288.83043 · doi:10.1063/1.4826499
[26] Rodrigues, WA; Rocha, R; Vaz, J, Hidden consequence of active local Lorentz invariance, Int. J. Geom. Meth. Mod. Phys., 2, 305, (2005) · Zbl 1079.81034 · doi:10.1142/S0219887805000600
[27] Vaz, J, The Clifford algebra of physical space and Dirac theory, Eur. J. Phys., 37, 055407, (2016) · Zbl 1349.81095 · doi:10.1088/0143-0807/37/5/055407
[28] Vignolo, S; Fabbri, L; Cianci, R, Dirac spinors in Bianchi-I f(R)-cosmology with torsion, J. Math. Phys., 52, 112502, (2011) · Zbl 1272.83064 · doi:10.1063/1.3658865
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.