×

Robust optimization of subsurface flow using polynomial chaos and response surface surrogates. (English) Zbl 1391.76672

Summary: This study employs an inclusive framework for surrogate model-based optimization in the presence of parametric and spatial uncertainties. The framework is applied to optimize water injection rate for optimal hydrocarbon recovery from a synthetic subsurface model with uncertainty in the geological and fluid relative permeability properties. In one model of parametric uncertainty, geological properties such as the channel’s absolute permeability and the fault transmissibility multiplier and the fluid relative permeability parameters such as the residual oil saturation to water and the water relative permeability at residual oil are assumed to be non-informative. In another model, the channels positions are assumed uncertain and various realizations of the channelized permeability are parameterized and the spatial uncertainty is accounted for in the optimization. The uncertainty is quantified in each evaluation of the objective function via polynomial chaos expansions. The coefficients of polynomial chaos expansion are solved by probabilistic collocation method. The objective function is assigned with a risk-averse net present value computed from a distribution of values obtained from the probabilistic proxies. The proxies are updated for each round of objective function evaluation. Monte-Carlo simulations are also conducted to verify accuracy and to demonstrate the computational efficiency of the probabilistic collocation approach. The optimization is conducted in various random input cases (depending on the number of uncertain parameters) and for each case net present value is successfully maximized and optimal solutions of the water injection rates are determined.

MSC:

76N25 Flow control and optimization for compressible fluids and gas dynamics
86A05 Hydrology, hydrography, oceanography
76S05 Flows in porous media; filtration; seepage
65C05 Monte Carlo methods
86-08 Computational methods for problems pertaining to geophysics

Software:

DACE; ORTHPOL
Full Text: DOI

References:

[1] Aanonsen, S.I., Eide, A.L., Holden, L., Aasen, J.O.: Optimizing reservoir performance under uncertainty with application to well location. In: the SPE Annual Technical Conference and Exhibition held in Dallas, U.S.A., 22-25 October, doi:10.2118/30710-MS (1995)
[2] Aitokhuehi, I; Durlofsky, LJ, Optimizing the performance of smart wells in complex reservoirs using continuously updated geological models, J. Pet. Sci. Eng., 48, 254-264, (2005) · doi:10.1016/j.petrol.2005.06.004
[3] Alkhatib, A; King, PR, An approximate dynamic programming approach to decision making in the presence of uncertainty for surfactant-polymer flooding, Comput. Geosci., 18, 243-263, (2014) · Zbl 1393.76113 · doi:10.1007/s10596-014-9406-2
[4] Alkhatib, A; King, PR, Robust quantification of parametric uncertainty for surfactant-polymer flooding, Comput. Geosci., 18, 77-101, (2014) · Zbl 1393.86007 · doi:10.1007/s10596-013-9384-9
[5] Artus, V; Durlofsky, LJ; Onwunalu, J; Aziz, K, Optimization of nonconventional wells under uncertainty using statistical proxies, Comput. Geosci., 10, 389-404, (2006) · Zbl 1196.74100 · doi:10.1007/s10596-006-9031-9
[6] Ashraf, M; Oladyshkin, S; Nowak, W, Geological storage of CO2 : application, feasibility and efficiency of global sensitivity analysis and risk assessment using the arbitrary polynomial chaos, Int. J. Greenh. Gas Control, 19, 704-719, (2013) · doi:10.1016/j.ijggc.2013.03.023
[7] Ben-Tal, A; Nemirovski, A, Robust optimization-methodology and applications, Math. Prog., 92, 453-480, (2002) · Zbl 1007.90047 · doi:10.1007/s101070100286
[8] Bertsimas, D; Brown, DB; Caramanis, C, Theory and applications of robust optimization, SIAM Rev., 53, 464-501, (2011) · Zbl 1233.90259 · doi:10.1137/080734510
[9] Beyer, HG; Sendhoff, B, Robust optimization—a comprehensive survey, Comput. Methods Appl. Mech. Eng., 196, 3190-3218, (2007) · Zbl 1173.74376 · doi:10.1016/j.cma.2007.03.003
[10] Blatman, G; Sudret, B, Efficient computation of global sensitivity indices using sparse polynomial chaos expansions, Reliab. Eng. Syst. Saf., 95, 1216-1229, (2010) · doi:10.1016/j.ress.2010.06.015
[11] Burton, M; Kumar, N; Bryant, SL, CO2 injectivity into brine aquifers: why relative permeability matters as much as absolute permeability, Energy Proc., 1, 3091-3098, (2009) · doi:10.1016/j.egypro.2009.02.089
[12] Busby, D; Farmer, CL; Iske, A, Hierarchical nonlinear approximation for experimental design and statistical data Fitting, SIAM J. Sci. Comput., 29, 49-69, (2007) · Zbl 1129.62071 · doi:10.1137/050639983
[13] Caers, J.: Front matter. doi:10.1002/9781119995920.fmatter, http://books.google.co.uk/books?id=gBaKfyic-z8C (2011) · Zbl 1014.65004
[14] Chen, Y; Oliver, D, Ensemble-based closed-loop optimization applied to brugge field, SPE Reserv. Eval. Eng., 13, 56-71, (2010) · doi:10.2118/118926-PA
[15] Cinnella, P; Hercus, S, Robust optimization of dense gas flows under uncertain operating conditions, Comput. Fluids, 39, 1893-1908, (2010) · Zbl 1245.76134 · doi:10.1016/j.compfluid.2010.06.020
[16] Da Cruz, PS; Horne, RN; Deutsch, CV, The quality map: a tool for reservoir uncertainty quantification and decision making, SPE Reserv. Eval. Eng., 7, 6-14, (2004) · doi:10.2118/87642-PA
[17] Cushman, J.H.: The physics of fluids in hierarchical porous media: Angstroms to miles. Kluwer Academic Publishers Dordrecht, The Netherlands (1997) · doi:10.1007/978-94-015-8849-2
[18] Dagan, G.: Flow and transport in porous formations. Springer-Verlag GmbH & Co. KG (1989)
[19] Dagan, G., Neuman S.P. Cambridge University Press, Subsurface flow and transport, A stochastic approach (2005)
[20] Deutsch, C.V.: Geostatistical reservoir modeling. Oxford University Press (2002)
[21] Dodson, M; Parks, GT, Robust aerodynamic design optimization using polynomial chaos, J. Aircr., 46, 635-646, (2009) · doi:10.2514/1.39419
[22] Dwight, R.P., Han, Z.H.: Efficient uncertainty quantification using gradient-enhanced kriging. AIAA Paper 2276 (2009)
[23] Eldred, M.S.: Design under uncertainty employing stochastic expansion methods. Int. J. Uncertain. Quantif. 1(2) (2011) · Zbl 1225.65064
[24] Elsheikh, AH; Hoteit, I; Wheeler, MF, Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates, Comput. Methods Appl. Mech. Eng., 269, 515-537, (2014) · doi:10.1016/j.cma.2013.11.001
[25] Van Essen, G; Zandvliet, M; Van den Hof, P; Bosgra, O; Jansen, JD, Robust waterflooding optimization of multiple geological scenarios, SPE J., 14, 202-210, (2009) · doi:10.2118/102913-PA
[26] Fajraoui, N., Ramasomanana, F., Younes, A., Mara, T.A., Ackerer, P., Guadagnini, A.: Use of global sensitivity analysis and polynomial chaos expansion for interpretation of nonreactive transport experiments in laboratory-scale porous media. Water Resour. Res. 47(2) (2011)
[27] Feinberg J: Probabilistic collocation method module POLYCHAOS., https://bitbucket.org/jonathf/polychaos/src(2012) · Zbl 1036.86013
[28] Field, R., Grigoriu, M.: Convergence properties of polynomial chaos approximations for L _{2} random variables. Public Report, Sandia National Laboratories, Albuquerque (2007) · doi:10.2172/903430
[29] Foo, J; Karniadakis, GE, Multi-element probabilistic collocation method in high dimensions, J. Comput. Phys., 229, 1536-1557, (2010) · Zbl 1181.65014 · doi:10.1016/j.jcp.2009.10.043
[30] Gautschi, W, Algorithm 726: ORTHPOL—A package of routines for generating orthogonal polynomials and Gauss-type quadrature rules, ACM Trans. Math. Softw. (TOMS), 20, 21-62, (1994) · Zbl 0888.65013 · doi:10.1145/174603.174605
[31] Gelhar, LW, Stochastic subsurface hydrology from theory to applications, Water Resources Research, 22, 135s-145s, (1986) · doi:10.1029/WR022i09Sp0135S
[32] Ghanem, R; Spanos, P, A stochastic Galerkin expansion for nonlinear random vibration analysis, Probabilistic Eng. Mech., 8, 255-264, (1993) · doi:10.1016/0266-8920(93)90019-R
[33] Glaz, B; Goel, T; Liu, L; Friedmann, PP; Haftka, RT, Multiple-surrogate approach to helicopter rotor blade vibration reduction, AIAA J., 47, 271-282, (2009) · doi:10.2514/1.40291
[34] Golub, GH; Welsch, JH, Calculation of Gauss quadrature rules, Math. Comput., 23, 221-230, (1969) · Zbl 0179.21901 · doi:10.1090/S0025-5718-69-99647-1
[35] Gorissen, D; Couckuyt, I; Laermans, E; Dhaene, T, Multiobjective global surrogate modeling, dealing with the 5-percent problem, Eng. Comput., 26, 81-98, (2010) · doi:10.1007/s00366-009-0138-1
[36] Güyagüler, B.: Optimization of well placement and assessment of uncertainty. PhD thesis, Stanford university (2002)
[37] Güyagüler, B; Horne, RN, Uncertainty assessment of well-placement optimization, SPE Reserv. Eval. Eng., 7, 24-32, (2004) · doi:10.2118/87663-PA
[38] Huang, S; Quek, S; Phoon, K, Convergence study of the truncated Karhunen-loeve expansion for simulation of stochastic processes, Int. J. Numer. Methods Eng., 52, 1029-1043, (2001) · Zbl 0994.65004 · doi:10.1002/nme.255
[39] Isukapalli, S; Roy, A; Georgopoulos, P, Stochastic response surface methods SRSMs for uncertainty propagation: application to environmental and biological systems, Risk Anal., 18, 351-363, (1998) · doi:10.1111/j.1539-6924.1998.tb01301.x
[40] Jafarpour, B; McLaughlin, DB, History matching with an ensemble Kalman filter and discrete cosine parameterization, Comput. Geosci., 12, 227-244, (2008) · Zbl 1159.86306 · doi:10.1007/s10596-008-9080-3
[41] Kalla, S; White, CD, Efficient design of reservoir simulation studies for development and optimization, SPE Reserv. Eval. Eng., 10, 629-637, (2007) · doi:10.2118/95456-PA
[42] Keese, A; Matthies, HG, Sparse quadrature as an alternative to Monte Carlo for stochastic finite element techniques, Proc. Appl. Math. Mech., 3, 493-494, (2003) · Zbl 1354.65013 · doi:10.1002/pamm.200310516
[43] Khu, ST; Werner, MG, Reduction of Monte-Carlo simulation runs for uncertainty estimation in hydrological modelling, Hydrol. Earth Syst. Sci. Discuss., 7, 680-692, (2003) · doi:10.5194/hess-7-680-2003
[44] Kim, NH; Wang, H; Queipo, NV, Efficient shape optimization under uncertainty using polynomial chaos expansions and local sensitivities, AIAA J., 44, 1112-1116, (2006) · doi:10.2514/1.13011
[45] Krevor, S., Pini, R., Zuo, L., Benson, S.M.: Relative permeability and trapping of CO _{2} and water in sandstone rocks at reservoir conditions. Water Resour. Res. 48(2) (2012) · Zbl 1230.90155
[46] Kruisselbrink, J., Emmerich, M., Bäck, T.: An archive maintenance scheme for finding robust solutions. In: Parallel Problem Solving from Nature, PPSN XI, pp 214-223. Springer (2010a)
[47] Kruisselbrink, J., Emmerich, M., Deutz, A., Bäck, T.: Exploiting overlap when searching for robust optima. In: Parallel Problem Solving from Nature, PPSN XI, pp 63-72. Springer (2010b)
[48] Laloy, E; Rogiers, B; Vrugt, JA; Mallants, D; Jacques, D, Efficient posterior exploration of a high-dimensional groundwater model from two-stage Markov chain Monte Carlo simulation and polynomial chaos expansion, Water Resour. Res., 49, 2664-2682, (2013) · doi:10.1002/wrcr.20226
[49] Li, H., Zhang, D.: Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods. Water Resour. Res. 43(9) (2007)
[50] Li, H; Zhang, D, Efficient and accurate quantification of uncertainty for multiphase flow with the probabilistic collocation method, SPE J., 14, 665-679, (2009) · doi:10.2118/114802-PA
[51] Li, H; Sarma, P; Zhang, D, A comparative study of the probabilistic-collocation and experimental-design methods for petroleum-reservoir uncertainty quantification, SPE J., 16, 429-439, (2011) · doi:10.2118/140738-PA
[52] Lie, KA; Krogstad, S; Ligaarden, IS; Natvig, JR; Nilsen, HM; Skaflestad, B, Open-source MATLAB implementation of consistent discretizations on complex grids, Comput. Geosci., 16, 297-322, (2012) · Zbl 1348.86002 · doi:10.1007/s10596-011-9244-4
[53] Lin, G; Tartakovsky, AM, An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media, Adv. Water Resour., 32, 712-722, (2009) · doi:10.1016/j.advwatres.2008.09.003
[54] Loeven, G; Bijl, H, Probabilistic collocation used in a two-step approach for efficient uncertainty quantification in computational fluid dynamics, Comput. Model. Eng. Sci., 36, 193-212, (2008) · Zbl 1232.76038
[55] Loeven, G., Witteveen, J., Bijl, H.: Probabilistic collocation: an efficient non-intrusive approach for arbitrarily distributed parametric uncertainties. In: Proceedings of the 45th AIAA Aerospace Sciences Meeting, vol. 6, pp 3845-3858 (2007)
[56] Lophaven, S.N., Nielsen, H.B., Søndergaard, J.: DACE-a Matlab Kriging toolbox, version 2.0. Technical Report (2002) · Zbl 1173.74376
[57] Mandur, J; Budman, H, Robust optimization of chemical processes using Bayesian description of parametric uncertainty, J. Process Control, 24, 422-430, (2013) · doi:10.1016/j.jprocont.2013.10.004
[58] Manzocchi, T; Walsh, J; Nell, P; Yielding, G, Fault transmissibility multipliers for flow simulation models, Pet. Geosci., 5, 53-63, (1999) · doi:10.1144/petgeo.5.1.53
[59] Mathelin, L., Hussaini, M.Y.: A stochastic collocation algorithm for uncertainty analysis, Technical report. Florida State University (2003) · Zbl 1140.76410
[60] Matheron, G.: Les variables régionalisées et leur estimation: une application de la théorie des fonctions aléatoires aux sciences de la nature, Masson Paris (1965)
[61] Mathias, SA; Gluyas, JG; Martínez, G; De Miguel, GJ; Bryant, SL; Wilson, D, On relative permeability data uncertainty and CO2 injectivity estimation for brine aquifers, Int. J. Greenh. Gas Control, 12, 200-212, (2013) · doi:10.1016/j.ijggc.2012.09.017
[62] Matthies, HG; Keese, A, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Eng., 194, 1295-1331, (2005) · Zbl 1088.65002 · doi:10.1016/j.cma.2004.05.027
[63] Mohaghegh, SD; Modavi, A; Hafez, H; Haajizadeh, M, Development of surrogate reservoir model SRM for fast track analysis of a complex reservoir. international journal of oil, Gas Coal Technol., 2, 2-23, (2009) · doi:10.1504/IJOGCT.2009.023627
[64] Molina-Cristobal, A., Parks, G., Clarkson, P.: Finding robust solutions to multi-objective optimisation problems using polynomial chaos. In: Proceedings of the 6th ASMO UK/ISSMO Conference on Engineering Design Optimization. Citeseer (2006)
[65] Mondal, A; Efendiev, Y; Mallick, B; Datta-Gupta, A, Bayesian uncertainty quantification for flows in heterogeneous porous media using reversible jump Markov chain Monte Carlo methods, Adv. Water Res., 33, 241-256, (2010) · doi:10.1016/j.advwatres.2009.10.010
[66] Müller, J.: Surrogate model optimization toolbox. Technical report. Tampere University of Technology (2012)
[67] Müller, J; Piché, R, Mixture surrogate models based on Dempster-Shafer theory for global optimization problems, J. Global Optim., 51, 79-104, (2011) · Zbl 1230.90155 · doi:10.1007/s10898-010-9620-y
[68] Müller, J., Shoemaker, C.A.: Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems, pp 1-22. Journal of Global Optimization (2014) · Zbl 1196.74100
[69] Nagy, Z; Braatz, R, Distributional uncertainty analysis using power series and polynomial chaos expansions, J. Process Control, 17, 229-240, (2007) · doi:10.1016/j.jprocont.2006.10.008
[70] Okano, H., Pickup, G., Christie, M., Subbey, S., Sambridge, M., Monfared, H.: Quantification of uncertainty in relative permeability for coarse-scale reservoir simulation. In: The SPE Europec/EAGE Annual Con in Madrid, pp 13-16. Society of Petroleum Engineers, Spain (2005)
[71] Oladyshkin, S., Nowak, W.: Polynomial response surfaces for probabilistic risk assessment and risk control via robust design. doi:10.5772/38170 (2012)
[72] Oladyshkin, S; Class, H; Helmig, R; Nowak, W, A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations, Adv. Water Resour., 34, 1508-1518, (2011) · doi:10.1016/j.advwatres.2011.08.005
[73] Onorato, G., Loeven, G., Ghorbaniasl, G., Bijl, H., Lacor, C.: Comparison of intrusive and non-intrusive polynomial chaos methods for CFD applications in aeronautics. In: Proceedings of the 5th European conference on computational fluid dynamics. ECCOMAS CFD, Lisbon, Portugal (2010)
[74] Onwunalu, JE; Durlofsky, LJ, Application of a particle swarm optimization algorithm for determining optimum well location and type, Comput. Geosci., 14, 183-198, (2010) · Zbl 1185.86024 · doi:10.1007/s10596-009-9142-1
[75] Pan, Y., Horne, R.N.: Improved methods for multivariate optimization of field development scheduling and well placement design. In: The 1998 SPE Annual Technical Conference and Exhibition, pp 27-30. Society of Petroleum Engineers, Held in New Orleans, Louisiana (1998)
[76] Petvipusit, K.R., Elsheikh, A.H., King, P.R., Blunt, M.J.: Robust optimisation using spectral high dimensional model representation-an application to CO2 sequestration strategy. In: ECMOR XIV-14th European conference on the mathematics of oil recovery (2014a)
[77] Petvipusit, KR; Elsheikh, AH; LaForce, TC; King, PR; Blunt, MJ, Robust optimisation of CO2 sequestration strategies under geological uncertainty using adaptive sparse grid surrogates, Comput. Geosci., 18, 763-778, (2014) · doi:10.1007/s10596-014-9425-z
[78] Petvipusit, K.R., Elsheikh, A.H., King, P.R., Blunt, M.J.: An efficient optimisation technique using adaptive spectral high-dimensional model representation: Application to CO2 sequestration strategies. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2015)
[79] Queipo, NV; Haftka, RT; Shyy, W; Goel, T; Vaidyanathan, R; Kevin Tucker, P, Surrogate-based analysis and optimization, Progress Aerosp. Sci., 41, 1-28, (2005) · doi:10.1016/j.paerosci.2005.02.001
[80] Rashid, K; Bailey, WJ; Couet, B; Wilkinson, D, An efficient procedure for expensive reservoir-simulation optimization under uncertainty, SPE Econ. Manag., 5, 21-33, (2013) · doi:10.2118/167261-PA
[81] Razavi, S., Tolson, B.A., Burn, D.H.: Review of surrogate modeling in water resources. Water Resour. Res. 48(7) (2012) · Zbl 0994.65004
[82] Reagana, MT; Najm, HN; Ghanem, RG; Knio, OM, Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection, Combust. Flame, 132, 545-555, (2003) · doi:10.1016/S0010-2180(02)00503-5
[83] Remy N: S-gems: the Stanford geostatistical modeling software: a tool for new algorithms development. In: Geostatistics Banff 2004, pp 865-871. Springer (2005) · Zbl 1366.86002
[84] Rohmer, J; Bouc, O, A response surface methodology to address uncertainties in cap rock failure assessment for CO2 geological storage in deep aquifers, Int. J. Greenh. Gas Control, 4, 198-208, (2010) · doi:10.1016/j.ijggc.2009.12.001
[85] Rubin, Y.: Applied stochastic hydrogeology. Oxford University Press (2003) · Zbl 1007.90047
[86] Sacks, J; Welch, WJ; Mitchell, TJ; Wynn, HP, Design and analysis of computer experiments, Stat. Sci., 4, 409-423, (1989) · Zbl 0955.62619 · doi:10.1214/ss/1177012413
[87] Sahinidis, NV, Optimization under uncertainty: state-of-the-art and opportunities, Comput. Chem. Eng., 28, 971-983, (2004) · doi:10.1016/j.compchemeng.2003.09.017
[88] Sarma, P; Durlofsky, LJ; Aziz, K; Chen, WH, Efficient real-time reservoir management using adjoint-based optimal control and model updating, Comput. Geosci., 10, 3-36, (2006) · Zbl 1161.86303 · doi:10.1007/s10596-005-9009-z
[89] Sarma, P; Durlofsky, LJ; Aziz, K, Kernel principal component analysis for efficient, differentiable parameterization of multipoint geostatistics, Math. Geosci., 40, 3-32, (2008) · Zbl 1144.86004 · doi:10.1007/s11004-007-9131-7
[90] Schölkopf, B; Smola, A; Müller, KR, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10, 1299-1319, (1998) · doi:10.1162/089976698300017467
[91] Strebelle, S, Conditional simulation of complex geological structures using multiple-point statistics, Math. Geol., 34, 1-21, (2002) · Zbl 1036.86013 · doi:10.1023/A:1014009426274
[92] Subbey, S; Monfared, H; Christie, M; Sambridge, M, Quantifying uncertainty in flow functions derived from scal data, Trans. Porous Media, 65, 265-286, (2006) · doi:10.1007/s11242-005-5998-2
[93] Sun, AY; Zeidouni, M; Nicot, JP; Lu, Z; Zhang, D, Assessing leakage detectability at geologic CO2 sequestration sites using the probabilistic collocation method, Adv. Water Res., 56, 49-60, (2013) · doi:10.1016/j.advwatres.2012.11.017
[94] Tatang, M.A.: Direct incorporation of uncertainty in chemical and environmental engineering systems. PhD thesis, Massachusetts Institute of Technology (1995)
[95] Tatang, MA; Pan, W; Prinn, RG; McRae, GJ, An efficient method for parametric uncertainty analysis of numerical geophysical models, J. Geophys. Res., 102, 21,925-21,932, (1997) · doi:10.1029/97JD01654
[96] Tsutsui, S; Ghosh, A, Genetic algorithms with a robust solution searching scheme. evolutionary computation, IEEE Trans. Evol. Comput., 1, 201-208, (1997) · doi:10.1109/4235.661550
[97] Viana, F.A., Gogu, C., Haftka, R.T.: Making the most out of surrogate models: tricks of the trade. In: ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 587?-598. American Society of Mechanical Engineers (2010)
[98] Vincent, G; Corre, B; Thore, P, Managing structural uncertainty in a mature field for optimal well placement, SPE Reserv. Eval. Eng, 2, 377-384, (1999) · doi:10.2118/57468-PA
[99] Vo, H.X., Durlofsky, L.J.: A new differentiable parameterization based on Principal Component Analysis for the low-dimensional representation of complex geological models. Mathematical Geosciences (2014) · Zbl 1323.86048
[100] Wang, H; Echeverría-Ciaurri, D; Durlofsky, LJ; Cominelli, A, Optimal well placement under uncertainty using a retrospective optimization framework, SPE J., 17, 112-121, (2012) · doi:10.2118/141950-PA
[101] Wiener, N, The homogeneous chaos, Am. J. Math., 60, 897-936, (1938) · JFM 64.0887.02 · doi:10.2307/2371268
[102] Xiong, F., Xue, B., Yan, Z., Yang, S.: Polynomial chaos expansion based robust design optimization. In: International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE), pp 868-873. IEEE (2011)
[103] Xiu, D; Karniadakis, GE, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619-644, (2002) · Zbl 1014.65004 · doi:10.1137/S1064827501387826
[104] Yeh, WWG, Reservoir management and operations models: a state-of-the-art review, Water Resour. Res., 21, 1797-1818, (1985) · doi:10.1029/WR021i012p01797
[105] Yeten, B; Durlofsky, LJ; Aziz, K, Optimization of nonconventional well type, location, and trajectory, SPE J., 8, 200-210, (2003) · doi:10.2118/86880-PA
[106] Zein, S, A polynomial chaos expansion trust region method for robust optimization, Commun. Comput. Phys., 14, 412-424, (2013) · Zbl 1373.90154
[107] Zhang, D.: Stochastic methods for flow in porous media: coping with uncertainties. Academic Press (2001) · Zbl 1245.76134
[108] Zhang, D; Lu, Z, An efficient, high-order perturbation approach for flow in random porous media via Karhunen-loeve and polynomial expansions, J. Comput. Phys., 194, 773-794, (2004) · Zbl 1101.76048 · doi:10.1016/j.jcp.2003.09.015
[109] Zhang, J; Chowdhury, S; Messac, A, An adaptive hybrid surrogate model, Struct. Multidiscip. Optim., 46, 223-238, (2012) · doi:10.1007/s00158-012-0764-x
[110] Zhang, Y; Sahinidis, NV, Uncertainty quantification in CO2 sequestration using surrogate models from polynomial chaos expansion, Ind. Eng. Chem. Res., 52, 3121-3132, (2012) · doi:10.1021/ie300856p
[111] Zhou, Z; Ong, YS; Lim, MH; Lee, BS, Memetic algorithm using multi-surrogates for computationally expensive optimization problems, Soft Comput., 11, 957-971, (2007) · doi:10.1007/s00500-006-0145-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.