×

\(G\)-Brownian motion as rough paths and differential equations driven by \(G\)-Brownian motion. (English) Zbl 1390.60205

Donati-Martin, Catherine (ed.) et al., Séminaire de Probabilités XLVI. Cham: Springer (ISBN 978-3-319-11969-4/pbk; 978-3-319-11970-0/ebook). Lecture Notes in Mathematics 2123. Séminaire de Probabilités, 125-193 (2014).
Summary: The present article is devoted to the study of sample paths of \(G\)-Brownian motion and stochastic differential equations (SDEs) driven by \(G\)-Brownian motion from the viewpoint of rough path theory. As the starting point, by using techniques in rough path theory, we show that quasi-surely, sample paths of \(G\)-Brownian motion can be enhanced to the second level in a canonical way so that they become geometric rough paths of roughness \(2<p<3\). This result enables us to introduce the notion of rough differential equations (RDEs) driven by \(G\)-Brownian motion in the pathwise sense under the general framework of rough paths. Next we establish the fundamental relation between SDEs and RDEs driven by \(G\)-Brownian motion. As an application, we introduce the notion of SDEs on a differentiable manifold driven by \(G\)-Brownian motion and construct solutions from the RDE point of view by using pathwise localization technique. This is the starting point of developing \(G\)-Brownian motion on a Riemannian manifold, based on the idea of Eells-Elworthy-Malliavin. The last part of this article is devoted to such construction for a wide and interesting class of \(G\)-functions whose invariant group is the orthogonal group. In particular, we establish the generating nonlinear heat equation for such \(G\)-Brownian motion on a Riemannian manifold. We also develop the Euler-Maruyama approximation for SDEs driven by \(G\)-Brownian motion of independent interest.
For the entire collection see [Zbl 1305.60008].

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60J65 Brownian motion
60J60 Diffusion processes

References:

[1] 1.D. Azagra, J. Ferrera, B. Sanz, Viscosity solutions to second order partial differential equations on riemannian manifolds. J. Differ. Equ. 245(2), 307-336 (2009) · Zbl 1235.49058 · doi:10.1016/j.jde.2008.03.030
[2] 2.S. Chern, W. Chen, K. Lam, \(Lectures on Differential Geometry\) (World Scientific, Singapore, 1999) · Zbl 0940.53001 · doi:10.1142/3812
[3] 3.G. Choquet, Theory of capacities. Ann. Inst. Fourier. 5, 87 (1953) · Zbl 0064.35101
[4] 4.M.G. Crandall, H. Ishii, P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27(1), 1-67 (1992) · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[5] 5.G. de Rham, \(Riemannian Manifolds\) (Springer, New York, 1984) · Zbl 0534.58003
[6] 6.C. Dellacherie, \(Capacités et Processus Stochastiques\) (Springer, New York, 1972) · Zbl 0246.60032
[7] 7.L. Denis, M. Hu, S. Peng, Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths. Potential Anal. 34(2), 139-161 (2011) · Zbl 1225.60057 · doi:10.1007/s11118-010-9185-x
[8] 8.K.D. Elworthy, \(Stochastic Differential Equations on Manifolds\) (Springer, New York, 1998) · Zbl 1004.58511
[9] 9.P.K. Friz, N.B. Victoir, \(Multidimensional Stochastic Processes as Rough Paths: Theory and Applications\) (Cambridge University Press, Cambridge, 2010) · Zbl 1193.60053 · doi:10.1017/CBO9780511845079
[10] 10.F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion. Stochast. Process. Appl. 119(10), 3356-3382 (2009) · Zbl 1176.60043 · doi:10.1016/j.spa.2009.05.010
[11] 11.B.M. Hambly, T.J. Lyons, Stochastic area for Brownian motion on the sierpinski gasket. Ann. Probab. 26(1), 132-148 (1998) · Zbl 0936.60073 · doi:10.1214/aop/1022855414
[12] 12.E.P. Hsu, \(Stochastic Analysis on Manifolds\) (American Mathematical Society, Providence, 2002) · Zbl 0994.58019
[13] 13.N. Ikeda, S.Watanabe, \(Stochastic Differential Equations and Diffusion Processes\) (North-Holland, Amsterdam, 1989) · Zbl 0684.60040
[14] 14.M. Kac, On distributions of certain wiener functionals. Trans. Am. Math. Soc. 65(1), 1-13 (1949) · Zbl 0032.03501 · doi:10.1090/S0002-9947-1949-0027960-X
[15] 15.I.A. Karatzas, S.E. Shreve, \(Brownian Motion and Stochastic Calculus\) (Springer, New York, 1991) · Zbl 0734.60060
[16] 16.S. Kobayashi, K. Nomizu, \(Foundations of Differential Geometry, I and II\) (Interscience, New York, 1963/1969) · Zbl 0119.37502
[17] 17.T.J. Lyons, Differential equations driven by rough signals. Rev. Mat. Iberoam. 14(2), 215-310 (1998) · Zbl 0923.34056 · doi:10.4171/RMI/240
[18] 18.T.J. Lyons, Z. Qian, \(System Control and Rough Paths\) (Oxford University Press, Oxford, 2002) · Zbl 1029.93001 · doi:10.1093/acprof:oso/9780198506485.001.0001
[19] 19.T.J. Lyons, C. Michael, T. Lévy, \(Differential Equations Driven by Rough Paths\) (Springer, Berlin, 2007)
[20] 20.K. Nomizu, H. Ozeki, The existence of complete riemannian metrics. Proc. Am. Math. Soc. 12(6), 889-891 (1961) · Zbl 0102.16401 · doi:10.1090/S0002-9939-1961-0133785-8
[21] 21.É. Pardoux, S. Peng, Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55-61 (1990) · Zbl 0692.93064 · doi:10.1016/0167-6911(90)90082-6
[22] 22.É. Pardoux, S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations, in \(Stochastic Partial Differential Equations and Their Applications\) (Springer, New York, 1992), pp. 200-217 · Zbl 0766.60079
[23] 23.É. Pardoux, S. Peng, Backward doubly stochastic differential equations and systems of quasilinear SPDEs. Probab. Theory Relat. Fields. 98(2), 209-227 (1994) · Zbl 0792.60050 · doi:10.1007/BF01192514
[24] 24.S. Peng, Backward SDE and related g-expectation, in \(Pitman Research Notes in Mathematics series\), vol. 364, ed. by N. El Karoui, L. Mazliak (1997), pp. 141-159 · Zbl 0892.60066
[25] 25.S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type. Stochast. Anal. Appl. 2, 541-567 (2007) · Zbl 1131.60057
[26] 26.S. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochast. Process. Appl. 118(12), 2223-2253 (2008) · Zbl 1158.60023 · doi:10.1016/j.spa.2007.10.015
[27] 27.S. Peng, Nonlinear expectations and stochastic calculus under uncertainty. Preprint, arXiv: 1002.4546 (2010)
[28] 28.E. Wong, M. Zakai, On the relation between ordinary and stochastic differential equations. Int. J. Eng. Sci. 3(2), 213-229 (1965) · Zbl 0131.16401 · doi:10.1016/0020-7225(65)90045-5
[29] 29.K. Yosida, \(Functional Analysis\) (Springer, New York, 1980) · Zbl 0830.46001 · doi:10.1007/978-3-642-61859-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.