×

A switching controller for high speed cell transportation by using a robot-aided optical tweezers system. (English) Zbl 1388.93062

Summary: Rapid and efficient cell manipulation is critical to many cellular operations at the single-cell resolution. In this paper, we propose a new approach for high speed manipulation of a single suspended cell using a robot-aided optical tweezers cell manipulation system. A switching geometrical model for achieving automatic cell trapping, maintenance of optical trapping, and obstacle avoidance is developed based on an objective of confining the trapped cell inside the high speed transfer region, which can help attain high speed cell transportation velocity. With the switching geometrical model, a controller for high speed cell transportation is proposed to transfer the target cell to the destination efficiently. Experiments of manipulating human leukemia cancer NB-4 cells to the specific testing area for property characterization are performed to demonstrate the effectiveness of the proposed approach.

MSC:

93C85 Automated systems (robots, etc.) in control theory
92C17 Cell movement (chemotaxis, etc.)
93A30 Mathematical modelling of systems (MSC2010)
93B27 Geometric methods
92C50 Medical applications (general)
Full Text: DOI

References:

[1] Aguilar-Ibanez, C.; Suarez-Castanon, M. S.; Rosas-Soriano, L. I., A simple control scheme for the manipulation of a particle by means of optical tweezers, International Journal of Robust and Nonlinear Control, 21, 3, 328-337, (2010) · Zbl 1211.93052
[2] Arai, F., Onda, K., Iitsuka, R., & Maruyama, H. (2009). Multi-beam laser micromanipulation of microtool by integrated optical tweezers. In IEEE Int. Conf. Rob. & Auto.; Arai, F., Onda, K., Iitsuka, R., & Maruyama, H. (2009). Multi-beam laser micromanipulation of microtool by integrated optical tweezers. In IEEE Int. Conf. Rob. & Auto.
[3] Ashkin, A., History of optical trapping and manipulation of small-neutral particles, atoms, and molecules, Journal of Quantum Electronics, 6, 841-859, (2000)
[4] Banerjee, A. G.; Chowhury, S.; Losert, W.; Gupta, S. K., Real-time path planning for coordinated transport of multiple particles using optical tweezers, IEEE Transactions on Automation Science and Engineering, 9, 4, 669-678, (2012)
[5] Bergeles, C.; Kratochvil, B. E.; Nelson, B. J., Visually servoing magnetic intraocular microdevices, IEEE Transactions on Robotics, 28, 4, 798-809, (2012)
[6] Beyor, N.; Seo, T. S.; Liu, P.; Mathies, R. A., Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection, Biomedical Microdevices, 10, 909-917, (2008)
[7] Boukallel, M.; Gauthier, M.; Dauge, M.; Piat, E.; Abadie, J., Smart microrobots for mechanical cell characterization and cell convoying, IEEE Transactions on Biomedical Engineering, 54, 1536-1540, (2007)
[8] Chapin, S. C.; Germain, V.; Dufresne, E. R., Automated trapping, assembly, and sorting with holographic optical tweezers, Optics Express, 14, 26, 13095-13100, (2006)
[9] Cheah, C. C.; Hou, S. P.; Slotine, J. E., Region-based shape control for a swarm of robots, Automatica, 45, 10, 2406-2411, (2009) · Zbl 1179.93024
[10] Cheah, C. C.; Li, X.; Yan, X.; Sun, D., Observer based optical manipulation of biological cells with robotic tweezers, IEEE Transactions on Robotics, 30, 30, 68-80, (2014)
[11] Chen, H.; Sun, D., Moving groups of microparticles into array with a robot-tweezers manipulation system, IEEE Transactions on Robotics, 28, 5, 1069-1080, (2012)
[12] Cheong, K. H., Gold nanoparticles for one-step DNA extraction and real-time PCR of pathogens in a single chamber, Lab on a Chip, 8, 810-813, (2008)
[13] Chowdhury, S.; Svec, P.; Wang, C.; Seale, K. T.; Wikswo, J. P.; Losert, W.; Gupta, S. K., Automated cell manipulation in optical tweezers-assisted microfluidic chamber, IEEE Transactions on Automation Science and Engineering, 10, 4, 980-989, (2013)
[14] Diller, E.; Giltinan, J.; Sitti, M., Independent control of multiple magnetic microrobots in three dimensions, International Journal of Robotics Research, 32, 5, 614-631, (2013)
[15] Dittrich, P. S.; Manz, A., Lab-on-a-chip: microfluidics in drug discovery, Nature Reviews Drug Discovery, 5, 210-218, (2006)
[16] Gauthier, R. C.; Wallace, S., Optical levitation of spheres: analytical development and numerical computations of the force equations, Journal of the Optical Society of America. B Optical Physics, 12, 9, 1680-1685, (1995)
[17] Hu, S.; Sun, D., Automatic transportation of biological cells with a robot-tweezer manipulation system, The International Journal of Robotics Research, 30, 14, 1681-1694, (2011)
[18] Huang, H.; Sun, D.; Mills, J. K.; Li, W. J.; Cheng, S. H., Visual-based impedance control of out-of-plane cell injection systems, IEEE Transactions on Automation Science and Engineering, 6, 3, 565-571, (2009)
[19] Ju, T.; Liu, S.; Yang, J.; Sun, D., Rapidly exploring random tree algorithm-based path planning for robot-aided optical manipulation of biological cells, IEEE Transactions on Automation Science and Engineering, 11, 3, 649-657, (2014)
[20] Lee, G. Y.H.; Lim, C. T., Biomechanics approaches to studying human diseases, Trends in Biotechnology, 25, 111-118, (2007)
[21] Li, X.; Cheah, C. C.; Hu, S.; Sun, D., Dynamic trapping and manipulation of biological cells with optical tweezers, Automatica, 49, 1614-1625, (2013) · Zbl 1360.93470
[22] Li, X.; Sun, D.; Yang, J., Bounded controller for multirobot navigation while maintaining network connectivity in the presence of obstacles, Automatica, 49, 1, 285-292, (2013) · Zbl 1257.93070
[23] Li, X.; Yang, H.; Wang, J.; Sun, D., Design of a robust unified controller for cell manipulation with a robot-aided optical tweezers system, Automatica, 51, 5, 279-286, (2015) · Zbl 1377.93072
[24] Onal, C.; Ozcan, O.; Sitti, M., Automated 2-D nanoparticle manipulation using atomic force microscopy, IEEE Transactions on Nanotechnology, 10, 3, 472-481, (2011)
[25] Ramser, K.; Hanstorp, D., Review article: optical manipulation for single cell studies, Journal of Biophotonics, 3, 4, 187-206, (2009)
[26] Rimon, E.; Koditschek, D. E., Exact robot navigation using artificial potential functions, IEEE Transactions on Robotics and Automation, 8, 5, 501-518, (1992)
[27] Stromberg, A.; Ryttsen, F.; Chiu, D. T.; Davidson, M.; Eriksson, P. S.; Wilson, C. F.; Orwar, O.; Zare, R. N., Manipulating the genetic identity and biochemical surface properties of individual cells with electric-field-induced fusion, Proceedings of the National Academy of Sciences of the United States of America, 97, 7-11, (2000)
[28] Tischler, J.; Surani, M. A., Investigating transcriptional states at single-cell-resolution, Current Opinion in Biotechnology, 24, 69-78, (2013)
[29] Wang, X.; Chen, S.; Kong, M.; Wang, Z.; Costa, K. D.; Li, R. A.; Sun, D., Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies, Lab on a Chip, 11, 3656-3662, (2011)
[30] Wu, Y.; Sun, D.; Huang, W., Mechanical force characterization in manipulating live cells with optical tweezers, Journal of Biomechanics, 44, 741-746, (2011)
[31] Wu, Y.; Sun, D.; Huang, W.; Xi, N., Dynamics analysis and motion planning for automated cell transportation with optical tweezers, IEEE/ASME Transactions on Mechatronics, 18, 2, 706-713, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.