×

An inverse problem for a family of two parameters time fractional diffusion equations with nonlocal boundary conditions. (English) Zbl 1387.80006

Summary: The determination of a space-dependent source term along with the solution for a 1-dimensional time fractional diffusion equation with nonlocal boundary conditions involving a parameter \(\beta>0\) is considered. The fractional derivative is generalization of the Riemann-Liouville and Caputo fractional derivatives usually known as Hilfer fractional derivative. We proved existence and uniqueness results for the solution of the inverse problem while over-specified datum at 2 different time is given. The over-specified datum at 2 time allows us to avoid initial condition in terms of fractional integral associated with Hilfer fractional derivative.

MSC:

80A23 Inverse problems in thermodynamics and heat transfer
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
45J05 Integro-ordinary differential equations
34K37 Functional-differential equations with fractional derivatives
42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
Full Text: DOI

References:

[1] MainardiF. Fractional Calculus and Waves in Linear Viscoelaticity. Imperial College Press, London; 2010.
[2] TarasovVE. Fractional Dynamics Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer‐Verlag, Beijing; 2010. · Zbl 1214.81004
[3] HilferR. Applications of Fractional Calculus in Physics. World Scientific, Singapore; 2000. · Zbl 0998.26002
[4] BaleanuD, GuvencZB, MachadoJAT. New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Netherlands; 2009.
[5] Gonzalez‐ParraG, ArenasAJ, CharpentierBMC. A fractional order epidemic model for the simulation of outbreak of influenza A(H1N1). Math Meth Appl Sci. 2014;37:2218‐2226. · Zbl 1300.92099
[6] RossB. 1975. A brief history and exposition of the fundamental theory of fractional calculus. In Frational Calculus and its Applications, Springer Lecture Notes in Mathematics, Springer-Verlag; New York vol. 57;1‐36. · Zbl 0303.26004
[7] MachadoJT, KiryakovaV, MainardiF. Recent history of fractional calculus. Commun Nonlinear Sci Numer Simulat. 2011;16:1140‐1153. · Zbl 1221.26002
[8] HilferR. On fractional diffusion and its relation with continuous time random walks. KutnerAPR (ed.), Sznajd‐WeronK (ed.), eds. Anomalous Diffusion: From Basis to Applications, Springer, Berlin; 1999; 1‐77.
[9] KlagesR, RadonsG, SokolovMI. Anomalous Transport. Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA; 2008.
[10] SierociukD, SkovranekT, MaciasM. Diffusion process modeling by using fractional‐order models. Appl Math Comp. 2015;257:2‐11.
[11] BirdRB, KlingenbergDJ. Multicomponent diffusion—a brief review. Adv Water Resour. 2013;62:238‐242.
[12] IttoY. Heterogeneous anomalous diffusion in view of superstatistics. Phys Lett A. 2014;378:3037‐3040. · Zbl 1298.82035
[13] FerreiraJA, PenaG, RomanazziG. Anomalous diffusion in porous media. Appl Math Model. 2016;40:1850‐1862. · Zbl 1446.76018
[14] MetzlerR, KlafterJ. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A: Math Gen. 2004;37(2004):161‐208. · Zbl 1075.82018
[15] MaL, HeR. Numerical and experimental study of general diffusuion equation within fractal pores. Combust Sci Technol. 2016;118:1073‐1094.
[16] HilferR. On fractional relaxation. Fractals. 2003;11:251‐257. · Zbl 1140.82315
[17] HilferR. Experimental evidence for fractional time evolution in glass forming materials. Chemical Phys. 2002;284:399‐408.
[18] HilferR. Classification theory for an equilibrium phase transitions. Phys Rev E. 1993;48:2466‐2475.
[19] HilferR. Exact solutions for a class of fractal time random walks. Fractals. 1995;3:211‐216. · Zbl 0881.60066
[20] HerrmannR. Fractional Calculus: An Introduction for Physicists. Singapore: World Scientic; 2011. · Zbl 1232.26006
[21] LukashchukSY. Conservation laws for time‐fractional subdiffusion and diffusion‐wave equations. Nonlinear Dyn. 2015;80:791‐802. · Zbl 1345.35131
[22] IonkinNI. Solution of a boundary value problem in heat conduction with a nonclassical boundary condition. Differ Equ. 1977;13:294‐306.
[23] BastysA, IvanauskasF, SapagovasM. An explicit solution of a parabolic equation with nonlocal boundary conditions. Lith Math J. 2005;45:257‐271. · Zbl 1103.35330
[24] GurevichP. Smoothness of generalised solutions for higher‐order elliptic equations with nonlocal boundary conditions. J Differ Equ. 2008;245:1323‐1355. · Zbl 1161.35008
[25] SkubachevskiiAL. Nonclassical boundary‐value problems. I. J Math Sci. 2008;155:199‐334. · Zbl 1162.35022
[26] KiraneM, MalikSA. Determination of an unknown source term and the temperature distribution for the linear heat equation involving fractional derivative in time. Appl Math Comp. 2011;218:163‐170. · Zbl 1231.35289
[27] FuratiKM, IyiolaOS, MustaphaK. An inverse source problem for a two‐parameter anomalous diffusion with local time datum. Comput Math Appl. 2017;73:1008‐1015. · Zbl 1409.35214
[28] AliM, MalikSA. An inverse problem for a family of time fractional diffusion equations. Inverse Probl Sci Eng. 2016;25:1299‐1322. · Zbl 1398.65232
[29] KiraneM, MalikSA, Al‐GwaizMA. An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions. Math Meth Appl Sci. 2013;36:1056‐1069. · Zbl 1267.80013
[30] FuratiKM, IyiolaOS, KiraneM. An inverse problem for a generalised fractional diffusion. Appl Math Comput. 2014;249:24‐31. · Zbl 1338.35493
[31] TatarS, UlusoyS. An inverse source problem for a one dimensional space‐time fractional diffusion equation. Appl Anal. 2015;94:2233‐2244. · Zbl 1327.35416
[32] TatarS, TinaztepeR, UlusoyS. Determination of an unknown source term in a space‐time fractional diffusion equation. J Fract Calc Appl. 2015;6:83‐90. · Zbl 1488.35629
[33] TatarS, UlusoyS. A uniqueness result for an inverse problem in space‐time fractional diffusion equation. Electronic J Differ Equ. 2013;258:1‐9. · Zbl 1287.65076
[34] LuchkoY, RundellW, YamamotoM, ZuoL. Uniqueness and reconstruction of an unknown semilinear term in a time‐fractional reaction‐diffusion equation. Inverse Problems. 2013;29:1‐16. https://doi.org/10.1088/0266-5611/29/6/065019 · Zbl 1273.65131 · doi:10.1088/0266-5611/29/6/065019
[35] RundellW, XuX, ZuoL. The determination of an unknown boundary condition in a fractional diffusion equation. Appl Anal. 2013;92:1511‐1526. · Zbl 1302.35412
[36] TatarS, UlusoyS. An inverse problem for a nonlinear diffusion equation with time‐fractional derivative. J Inverse Ill‐Posed Probl. 2017;25:1‐9. https://doi.org/10.1515/JIIp-2015-0100 · doi:10.1515/JIIp-2015-0100
[37] MalikSA, AzizS. An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary conditions. Comput Math Appl. 2017;73:2548‐2560. · Zbl 1386.35479
[38] JinB, RundellW. A tutorial on inverse problems for anomalous diffusion processes. Inverse Problems. 2015;31:1‐40. https://doi.org/10.1088/0266-5611/31/3/035003 · Zbl 1323.34027 · doi:10.1088/0266-5611/31/3/035003
[39] PodlubnyI. Fractional Differential Equations. Academic Press; San Diego, California; 1999. · Zbl 0924.34008
[40] SamkoGS, KilbasAA, MarichevDI. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers; Amsterdam; 1993. · Zbl 0818.26003
[41] GorenfloR, KilbasAA, MainardiF, RogosinSV. Mittag‐Leffler functions, related topics and applications, 2014. · Zbl 1309.33001
[42] MainardiF. On some properties of the Mittag‐Leffler function E_α(−t^α), completely montone for t>0 with 0<α<1. Continuous Dyn Syst Ser B. 2014;19:2267‐2278. · Zbl 1303.26007
[43] PottierN. Relaxation time distribution for an anomalously diffusing particle. Phys A. 2011;390:2863‐2879.
[44] MokinAY. On a family of Initial‐boundary value problems for the heat equation. Differ Equ. 2009;45:126‐141. · Zbl 1180.35268
[45] KamockiR. A new representation formula for the Hilfer fractional derivative and its applications. J Comput Appl Math. 2016;308:39‐45. · Zbl 1345.26013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.