×

Dynamics of a two-dimensional system of rational difference equations of Leslie-Gower type. (English) Zbl 1384.37031

Summary: We investigate global dynamics of the following systems of difference equations
\[ \begin{cases} x_{n+1} = \frac{\alpha_1 + \beta_1x_n} {A_1+\gamma_n} \\ \gamma_{n+1} = \frac{\gamma_2\gamma_n}{A_2+B_2x_n+\gamma_n}\end{cases} , \quad n=0,1,2,\dots \]
where the parameters \(\alpha_1, \beta_1, A_1, \gamma_2, A_2, B_2\) are positive numbers, and the initial conditions \( x_0\) and \(y_0\) are arbitrary nonnegative numbers. We show that this system has rich dynamics which depends on the region of parametric space. We show that the basins of attractions of different locally asymptotically stable equilibrium points or non-hyperbolic equilibrium points are separated by the global stable manifolds of either saddle points or non-hyperbolic equilibrium points. We give examples of a globally attractive non-hyperbolic equilibrium point and a semi-stable non-hyperbolic equilibrium point. We also give an example of two local attractors with precisely determined basins of attraction. Finally, in some regions of parameters, we give an explicit formula for the global stable manifold.

MSC:

37C75 Stability theory for smooth dynamical systems
39A33 Chaotic behavior of solutions of difference equations
39A30 Stability theory for difference equations

References:

[1] Camouzis E, Kulenović MRS, Ladas G, Merino O: Rational systems in the plane.J Differ Equ Appl 2009, 15:303-323. · Zbl 1169.39010 · doi:10.1080/10236190802125264
[2] Kulenović MRS, Merino O: Invariant manifolds for competitive discrete systems in the plane.Int J Bifurcat Chaos 2010, 20:2471-2486. · Zbl 1202.37027 · doi:10.1142/S0218127410027118
[3] Kulenović MRS, Merino O: Global bifurcation for competitive systems in the plane.Discret Cont Dyn Syst B 2009, 12:133-149. · Zbl 1175.37058 · doi:10.3934/dcdsb.2009.12.133
[4] AlSharawi Z, Rhouma M: Coexistence and extinction in a competitive exclusion Leslie/Gower model with harvesting and stocking.J Differ Equ Appl 2009, 15:1031-1053. · Zbl 1176.92050 · doi:10.1080/10236190802459861
[5] Cushing JM, Levarge S, Chitnis N, Henson SM: Some discrete competition models and the competitive exclusion principle.J Differ Equ Appl 2004, 10:1139-1152. · Zbl 1071.39005 · doi:10.1080/10236190410001652739
[6] Kulenović, MRS; Nurkanović, M., Asymptotic behavior of a linear fractional system of difference equations, 127-143 (2005) · Zbl 1086.39008
[7] Clark D, Kulenović MRS, Selgrade JF: Global asymptotic behavior of a two dimensional difference equation modelling competition.Nonlinear Anal TMA 2003, 52:1765-1776. · Zbl 1019.39006 · doi:10.1016/S0362-546X(02)00294-8
[8] Hirsch MW: Systems of differential equations which are competitive or cooperative.I Limits Sets SIAM J Math Anal 1982,13(2):167-179. · Zbl 0494.34017 · doi:10.1137/0513013
[9] Hirsch, M.; Smith, H.; Canada, A. (ed.); Drabek, P. (ed.); Fonda, A. (ed.), Monotone dynamical systems, No. II, 239-357 (2005), Amsterdam · Zbl 1094.34003
[10] Kalabušić, S.; Kulenović, MRS; Pilav, E., Global dynamics of a competitive system of rational difference equations in the plane, 30 (2009) · Zbl 1187.39024
[11] Kulenović MRS, Merino O: Discrete Dynamical Systems and Difference Equations with Mathematica. Chapman & Hall/CRC Press, Boca Raton; 2002. · Zbl 1001.37001 · doi:10.1201/9781420035353
[12] Kulenović MRS, Merino O: Competitive-exclusion versus competitive-coexistence for systems in the plane.Discret Cont Dyn Syst Ser B 2006, 6:1141-1156. · Zbl 1116.37030 · doi:10.3934/dcdsb.2006.6.1141
[13] Leonard WJ, May R: Nonlinear aspects of competition between species.SIAM J Appl Math 1975, 29:243-275. · Zbl 0314.92008 · doi:10.1137/0129022
[14] Smith HL: Invariant curves for mappings.SIAM J Math Anal 1986, 17:1053-1067. · Zbl 0606.47056 · doi:10.1137/0517075
[15] Smith HL: Periodic competitive differential equations and the discrete dynamics of competitive maps.J Differ Equ 1986, 64:165-194. · Zbl 0596.34013 · doi:10.1016/0022-0396(86)90086-0
[16] Smith HL: Periodic solutions of periodic competitive and cooperative systems.SIAM J Math Anal 1986, 17:1289-1318. · Zbl 0609.34048 · doi:10.1137/0517091
[17] Smith HL: Planar competitive and cooperative difference equations.J Differ Equ Appl 1998, 3:335-357. · Zbl 0907.39004 · doi:10.1080/10236199708808108
[18] Smith HL: Non-monotone systems decomposable into monotone systems with negative feedback.J Math Biol 2006, 53:747-758. · Zbl 1118.65057 · doi:10.1007/s00285-006-0004-3
[19] Takáč P: Domains of attraction of genericω-limit sets for strongly monotone discrete-time semigroups.J Reine Angew Math 1992, 423:101-173. · Zbl 0729.54022
[20] de Mottoni P, Schiaffino A: Competition systems with periodic coefficients: a geometric approach.J Math Biol 1981, 11:319-335. · Zbl 0474.92015 · doi:10.1007/BF00276900
[21] Hess, P., Periodic-Parabolic Boundary Value Problems and Positivity, No. 247 (1991), Harlow · Zbl 0731.35050
[22] Kocic V, Ladas G: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer, Dordreht; 1993. · Zbl 0787.39001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.