×

An ellipsoidal particle in tube Poiseuille flow. (English) Zbl 1383.76489

Summary: A suspended ellipsoidal particle inside a Poiseuille flow with Reynolds number up to 360 is studied numerically. The effects of tube diameter (\(D\)), inertia of the particle and the flow, and the particle geometry (both prolate and oblate ellipsoids) are considered. When a prolate particle with \(a/b=2\) is inside a wider tube (e.g. \(D/A>1.9\)), where \(A=2a\) is the length of the major axis of the particle, the terminal stable state is tumbling. When the prolate particle is inside a narrower tube (\(1.0<D/A<1.9\)), log-rolling or kayaking modes may appear. Which mode occurs depends on the competition between fluid and particle inertia. When the fluid inertia is dominant, the log-rolling mode appears, otherwise, the kayaking mode appears. Inclined and spiral modes may appear when \(D/A<1\) and \(D/A=1\), respectively. For a prolate ellipsoid with \(a/b=4\), if \(1<D/A<1.9\), there is only the kayaking mode and the log-rolling mode is not observed. When an oblate particle is inside a wider tube (e.g. \(D/A>3.5\)), it may adopt the log-rolling mode. Inclined and intermediate modes are firstly identified in narrower tubes. The phase diagram of the modes is also provided. The modes in the phase diagrams were not found to be affected by the initial state of the particle based on limited observation.

MSC:

76T20 Suspensions
Full Text: DOI

References:

[1] Aidun, C. K.; Lu, Y.; Ding, E.-J., Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation, J. Fluid Mech., 373, 287-311, (1998) · Zbl 0933.76092 · doi:10.1017/S0022112098002493
[2] Byeon, H. J.; Seo, K. W.; Lee, S. J., Precise measurement of three-dimensional positions of transparent ellipsoidal particles using digital holographic microscopy, Appl. Opt., 54, 8, 2106-2112, (2015) · doi:10.1364/AO.54.002106
[3] Chen, Y.; Cai, Q.-D.; Xia, Z.-H.; Wang, M.-R.; Chen, S.-Y., Momentum-exchange method in lattice Boltzmann simulations of particle – fluid interactions, Phys. Rev. E, 88, 1, (2013)
[4] D’Avino, G.; Greco, F.; Maffettone, P. L., Rheology of a dilute viscoelastic suspension of spheroids in unconfined shear flow, Rheol. Acta, 54, 11-12, 915-928, (2015) · doi:10.1007/s00397-015-0881-8
[5] D’Avino, G.; Maffettone, P. L., Particle dynamics in viscoelastic liquids, J. Non-Newtonian Fluid Mech., 215, 80-104, (2015) · doi:10.1016/j.jnnfm.2014.09.014
[6] Ding, E.; Aidun, C. K., The dynamics and scaling law for particles suspended in shear flow with inertia, J. Fluid Mech., 423, 317-344, (2000) · Zbl 1003.76090 · doi:10.1017/S0022112000001932
[7] Einarsson, J.; Candelier, F.; Lundell, F.; Angilella, J. R.; Mehlig, B., Rotation of a spheroid in a simple shear at small Reynolds number, Phys. Fluids, 27, 6, (2015) · doi:10.1063/1.4921543
[8] Feng, J.; Hu, H. H.; Joseph, D. D., Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows, J. Fluid Mech., 261, 95-134, (1994) · Zbl 0800.76114 · doi:10.1017/S0022112094000285
[9] Huang, H.; Wu, Y.; Lu, X.-Y., Shear viscosity of dilute suspensions of ellipsoidal particles with a lattice Boltzmann method, Phys. Rev. E, 86, 4, (2012)
[10] Huang, H.; Yang, X.; Krafczyk, M.; Lu, X.-Y., Rotation of spheroidal particles in Couette flows, J. Fluid Mech., 692, 369-394, (2012) · Zbl 1250.76172 · doi:10.1017/jfm.2011.519
[11] Huang, H.; Yang, X.; Lu, X.-Y., Sedimentation of an ellipsoidal particle in narrow tubes, Phys. Fluids, 26, 5, (2014)
[12] D’Humiéres, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.-S., Multiple-relaxation-time lattice Boltzmann models in three dimensions, Phil. Trans. R. Soc. Lond. A, 360, 437-451, (2002) · Zbl 1001.76081 · doi:10.1098/rsta.2001.0955
[13] Jeffery, G. B., The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. Lond. A, 102, 715, 161-179, (1922) · JFM 49.0748.02 · doi:10.1098/rspa.1922.0078
[14] Karnis, A.; Goldsmith, H. L.; Mason, S. G., Axial migration of particles in Poiseuille flow, Nature, 200, 159-160, (1963) · doi:10.1038/200159a0
[15] Karnis, A.; Goldsmith, H. L.; Mason, S. G., The flow of suspensions through tubes: V. inertial effects, Can. J. Chem. Engng, 44, 4, 181-193, (1966) · doi:10.1002/cjce.5450440401
[16] Ladd, A. J. C., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech., 271, 285-309, (1994) · Zbl 0815.76085 · doi:10.1017/S0022112094001771
[17] Lallemand, P.; Luo, L.-S., Lattice Boltzmann method for moving boundaries, J. Comput. Phys., 184, 2, 406-421, (2003) · Zbl 1062.76555 · doi:10.1016/S0021-9991(02)00022-0
[18] Mei, R. W.; Luo, L.-S.; Shyy, W., An accurate curved boundary treatment in the lattice Boltzmann method, J. Comput. Phys., 155, 2, 307-330, (1999) · Zbl 0960.82028 · doi:10.1006/jcph.1999.6334
[19] Pan, T.-W.; Chang, C.-C.; Glowinski, R., On the motion of a neutrally buoyant ellipsoid in a three-dimensional Poiseuille flow, Comput. Meth. Appl. Mech. Engng, 197, 25, 2198-2209, (2008) · Zbl 1158.76353 · doi:10.1016/j.cma.2007.09.006
[20] Qi, D.-W., Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows, J. Fluid Mech., 385, 41-62, (1999) · Zbl 0938.76089 · doi:10.1017/S0022112099004401
[21] Qi, D.-W.; Luo, L.-S., Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows, J. Fluid Mech., 477, 201-213, (2003) · Zbl 1063.76542 · doi:10.1017/S0022112002003191
[22] Qi, D.-W.; Luo, L.-S.; Aravamuthan, R.; Strieder, W., Lateral migration and orientation of elliptical particles in Poiseuille flows, J. Stat. Phys., 107, 1-2, 101-120, (2002) · Zbl 1126.82328 · doi:10.1023/A:1014502402884
[23] Rosén, T.; Einarsson, J.; Nordmark, A.; Aidun, C. K.; Lundell, F.; Mehlig, B., Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers, Phys. Rev. E, 92, 6, (2015)
[24] Rosén, T.; Lundell, F.; Aidun, C. K., Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow, J. Fluid Mech., 738, 563-590, (2014) · doi:10.1017/jfm.2013.599
[25] Rosén, T.; Nordmark, A.; Aidun, C. K.; Do-Quang, M.; Lundell, F., Quantitative analysis of the angular dynamics of a single spheroid in simple shear flow at moderate Reynolds numbers, Phys. Rev. Fluids, 1, 4, (2016)
[26] Segre, G.; Silberberg, A., Radial particle displacements in Poiseuille flow of suspensions, Nature, 189, 209-210, (1961) · doi:10.1038/189209a0
[27] Sugihara-Seki, M., The motion of an ellipsoid in tube flow at low Reynolds numbers, J. Fluid Mech., 324, 287-308, (1996) · Zbl 1002.76537 · doi:10.1017/S0022112096007926
[28] Swaminathan, T. N.; Mukundakrishnan, K.; Hu, H. H., Sedimentation of an ellipsoid inside an infinitely long tube at low and intermediate Reynolds numbers, J. Fluid Mech., 551, 357-385, (2006) · Zbl 1119.76068 · doi:10.1017/S0022112005008402
[29] Villone, M. M.; D’Avino, G.; Hulsen, M. A.; Maffettone, P. L., Dynamics of prolate spheroidal elastic particles in confined shear flow, Phys. Rev. E, 92, 6, (2015)
[30] Xia, Z.; Connington, K. W.; Rapaka, S.; Yue, P.; Feng, J. J.; Chen, S.-Y., Flow patterns in the sedimentation of an elliptical particle, J. Fluid Mech., 625, 249-272, (2009) · Zbl 1171.76362 · doi:10.1017/S0022112008005521
[31] Yang, B. H.; Wang, J.; Joseph, D. D.; Hu, H. H.; Pan, T.-W.; Glowinski, R., Migration of a sphere in tube flow, J. Fluid Mech., 540, 109-131, (2005) · Zbl 1082.76028 · doi:10.1017/S0022112005005677
[32] Yang, X.; Huang, H.; Lu, X.-Y., Sedimentation of an oblate ellipsoid in narrow tubes, Phys. Rev. E, 92, 6, (2015)
[33] Yu, Z. S.; Phan-Thien, N.; Tanner, R. I., Dynamic simulation of sphere motion in a vertical tube, J. Fluid Mech., 518, 61-93, (2004) · Zbl 1131.76313 · doi:10.1017/S0022112004000771
[34] Yu, Z.-S.; Phan-Thien, N.; Tanner, R. I., Rotation of a spheroid in a Couette flow at moderate Reynolds numbers, Phys. Rev. E, 76, 2, (2007)
[35] Zhu, M.-Y.2000 Direct numerical simulation of solid-liquid flow of Newtonian and viscoelastic fluids. PhD thesis, University of Pennsylvania.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.