×

Finite-/fixed-time robust stabilization of switched discontinuous systems with disturbances. (English) Zbl 1380.93194

Summary: This paper investigates the finite-time and fixed-time stabilization (FFTS) of switched systems with discontinuous dynamics, external disturbances and delays. Firstly, a new parameterized discontinuous stabilizer is designed to ensure the FFTS of switched discontinuous systems in the sense of Filippov solutions. Secondly, a detailed analysis is provided on how to regulate the power parameters to determine the settling time is finite or fixed. Thirdly, a new adaptive controller is further designed to stabilize the considered system in a finite time, and the corresponding settling time is estimated as well. Finally, two examples are given to demonstrate the efficiency of the proposed method.

MSC:

93D09 Robust stability
34A36 Discontinuous ordinary differential equations
93C40 Adaptive control/observation systems
93C73 Perturbations in control/observation systems
Full Text: DOI

References:

[1] Mei, J., Jiang, M., Wu, Z., Wang, X.: Periodically intermittent controlling for finite-time synchronization of complex dynamical networks. Nonlinear Dyn. 79(1), 295-305 (2015) · Zbl 1331.93006 · doi:10.1007/s11071-014-1664-y
[2] Yan, Z., Park, J.H., Zhang, W.: Finite-time guaranteed cost control for Itô Stochastic Markovian jump systems with incomplete transition rates. Int. J. Robust Nonlinear Control 27(1), 66-83 (2017) · Zbl 1353.93119 · doi:10.1002/rnc.3558
[3] Huang, S., Xiang, Z.: Finite-time stabilization of a class of switched stochastic nonlinear systems under arbitrary switching. Int. J. Robust Nonlinear Control 26(10), 2136-2152 (2016) · Zbl 1342.93114 · doi:10.1002/rnc.3398
[4] Du, H., Li, S., Shi, P.: Robust consensus algorithm for second-order multiagent systems with external disturbances. Int. J. Control 85(12), 1913-1928 (2012) · Zbl 1401.93080 · doi:10.1080/00207179.2012.713515
[5] Bhat, S., Bernstein, D.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[6] Yan, Z., Zhang, G., Zhang, W.: Finite-time stability and stabilization of linear Itô stochastic systems with state and control-dependent noise. Asian J. Control 15(1), 270-281 (2013) · Zbl 1327.93393 · doi:10.1002/asjc.531
[7] Shen, H., Park, J.H., Wu, Z.G.: Finite-time synchronization control for uncertain Markov jump neural networks with input constraints. Nonlinear Dyn. 77(4), 1709-1720 (2014) · Zbl 1331.92019 · doi:10.1007/s11071-014-1412-3
[8] Huang, S., Xiang, Z.: Finite-time output tracking for a class of switched nonlinear systems. Int. J. Robust Nonlinear Control 27(6), 1017-1038 (2017) · Zbl 1369.93287 · doi:10.1002/rnc.3616
[9] Hu, Q., Li, B., Zhang, A.: Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment. Nonlinear Dyn. 73(1-2), 53-71 (2013) · Zbl 1281.70015 · doi:10.1007/s11071-013-0766-2
[10] Guan, Z., Sun, F., Wang, Y., Li, T.: Finite-time consensus for leader-following second-order multi-agent networks. IEEE Trans. Circuits Syst. I 59(11), 2646-2654 (2012) · Zbl 1468.93028 · doi:10.1109/TCSI.2012.2190676
[11] Dong, Y., Liu, W., Li, T., Liang, S.: Finite-time boundedness analysis and \[H_\infty H\]∞ control for switched neutral systems with mixed time-varying delays. J. Franklin Inst. 354(2), 787-811 (2017) · Zbl 1355.93148 · doi:10.1016/j.jfranklin.2016.10.037
[12] Wang, Y., Zou, Y., Zuo, Z., Li, H.: Finite-time stabilization of switched nonlinear systems with partial unstable modes. Appl. Math. Comput. 29, 172-181 (2016) · Zbl 1410.93064
[13] Yang, X., Ho, D.W.C., Lu, J., Song, Q.: Finite-time cluster synchronization of TCS fuzzy complex networks with discontinuous subsystems and random coupling delays. IEEE Trans. Fuzzy Syst. 23(6), 2302-2316 (2015) · doi:10.1109/TFUZZ.2015.2417973
[14] Su, Q., Jia, X., Liu, H.: Finite-time stabilization of a class of cascade nonlinear switched systems under state-dependent switching. Appl. Math. Comput. 289, 172-180 (2016) · Zbl 1410.93092
[15] Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106-2110 (2012) · Zbl 1369.93128 · doi:10.1109/TAC.2011.2179869
[16] Polyakov, A., Efimov, D., Perruquetti, W.: Finite-time and fixed-time stabilization: implicit Lyapunov function approach. Automatica 51, 332-340 (2015) · Zbl 1309.93135 · doi:10.1016/j.automatica.2014.10.082
[17] Zuo, Z., Tie, L.: Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 47(6), 1366-1375 (2016) · Zbl 1333.93027 · doi:10.1080/00207721.2014.925608
[18] Lu, W., Liu, X., Chen, T.: A note on finite-time and fixed-time stability. Neural Netw. 81, 11-15 (2016) · Zbl 1417.34123 · doi:10.1016/j.neunet.2016.04.011
[19] Liu, X., Chen, T.: Finite-time and fixed-time cluster synchronization with or without pinning control. IEEE Trans. Cybern. (2016). doi:10.1109/TCYB.2016.2630703 · Zbl 1355.93148
[20] Meng, D., Zuo, Z.: Signed-average consensus for networks of agents: a nonlinear fixed-time convergence protocol. Nonlinear Dyn. 85, 155-165 (2013) · Zbl 1349.94013 · doi:10.1007/s11071-016-2675-7
[21] Wang, Y., Zou, Y., Zuo, Z., Li, H.: Finite-time stabilization of switched nonlinear systems with partial unstable modes. Appl. Math. Comput. 291, 172-181 (2016) · Zbl 1410.93064
[22] Zhang, L., Zhuang, S., Shi, P., Zhu, Y.: Uniform tube based stabilization of switched linear systems with mode-dependent persistent dwell-time. IEEE Trans. Autom. Control 60(11), 2994-2999 (2015) · Zbl 1360.93625 · doi:10.1109/TAC.2015.2414813
[23] Zhao, X., Yin, S., Li, H., Niu, B.: Switching stabilization for a class of slowly switched systems. IEEE Trans. Autom. Control 60(1), 221-226 (2015) · Zbl 1360.93584 · doi:10.1109/TAC.2014.2322961
[24] Ren, W., Xiong, J.: Stability and stabilization of switched stochastic systems under asynchronous switching. Syst. Control Lett. 97, 184-192 (2016) · Zbl 1350.93092 · doi:10.1016/j.sysconle.2016.09.005
[25] Yan, Z., Zhang, W., Zhang, G.: Finite-time stability and stabilization of Itô stochastic systems with Markovian switching: mode-dependent parameter approach. IEEE Trans. Autom. Control 60(9), 2428-2433 (2015) · Zbl 1360.93757 · doi:10.1109/TAC.2014.2382992
[26] Huang, S., Xiang, Z.: Finite-time stabilization of switched stochastic nonlinear systems with mixed odd and even powers. Automatica 73, 130-137 (2016) · Zbl 1372.93211 · doi:10.1016/j.automatica.2016.06.023
[27] Amato, F., Ariola, M., Dorato, P.: Finite-time control of linear systems subject to parametric uncertainties and disturbances. Automatica 37(9), 1459-1463 (2001) · Zbl 0983.93060 · doi:10.1016/S0005-1098(01)00087-5
[28] Hong, Y., Wang, J., Chen, D.: Adaptive finite-time control of nonlinear systems with parametric uncertainty. IEEE Trans. Autom. Control 51(5), 858-862 (2006) · Zbl 1366.93290 · doi:10.1109/TAC.2006.875006
[29] Liu, X., Ho, D.W.C., Cao, J., Xu, W.: Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS.2016.2599199 · doi:10.1109/TNNLS.2016.2599199
[30] Zhai, D., Xia, Y.: Adaptive finite-time control for nonlinear teleoperation systems with asymmetric time-varying delays. Int. J. Robust Nonlinear Control 26(12), 2586-2607 (2016) · Zbl 1346.93226 · doi:10.1002/rnc.3462
[31] Yang, X., Song, Q., Liang, J., He, B.: Finite-time synchronization of coupled discontinuous neural networks with mixed delays and nonidentical perturbations. J. Franklin Inst. 352(10), 4382-4406 (2015) · Zbl 1395.93354 · doi:10.1016/j.jfranklin.2015.07.001
[32] Wang, X., Zong, G., Sun, H.: Asynchronous finite-time dynamic output feedback control for switched time-delay systems with non-linear disturbances. IET Control Theory Appl. 10(10), 1142-1150 (2016) · doi:10.1049/iet-cta.2015.0577
[33] Chen, G., Lewis, F., Xie, L.: Finite-time distributed consensus via binary control protocols. Automatica 47(9), 1962-1968 (2012) · Zbl 1226.93008 · doi:10.1016/j.automatica.2011.05.013
[34] Cortés, J.: Finite-time convergent gradient flows with applications to network consensus. Automatica 42(11), 1993-2000 (2006) · Zbl 1261.93058 · doi:10.1016/j.automatica.2006.06.015
[35] Liu, X., Ho, D.W.C., Yu, W., Cao, J.: A new switching design to finite-time stabilization of nonlinear systems with applications to neural networks. Neural Netw. 57, 94-102 (2014) · Zbl 1323.93064 · doi:10.1016/j.neunet.2014.05.025
[36] Forti, A., Grazzini, A., Nistri, P.: Generalized Lyapunov approach for convergence of neural networks with discontinuous or non-Lipschitz activations. Physica D 214(1), 88-99 (2006) · Zbl 1103.34044
[37] Liu, X., Cao, J.: Robust state estimation for neural networks with discontinuous activations. IEEE Trans. Syst. Man Cybern. Part B 40(6), 1425-1437 (2010) · doi:10.1109/TSMCB.2009.2039478
[38] Filippov, A.F.: Differential Equations with Discontinuous Right-hand Side, Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers, Boston (1988) · Zbl 0664.34001 · doi:10.1007/978-94-015-7793-9
[39] Liu, X., Cao, J., Yu, W., Song, Q.: Nonsmooth finite-time synchronization of switched coupled neural networks. IEEE Trans. Cybern. 46(10), 2360-2371 (2016) · doi:10.1109/TCYB.2015.2477366
[40] Liu, X., Lam, J., Yu, W., Chen, G.: Finite-time consensus of multiagent systems with a switching protocol. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 853-862 (2016) · doi:10.1109/TNNLS.2015.2425933
[41] Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, Berlin (1984) · Zbl 0538.34007 · doi:10.1007/978-3-642-69512-4
[42] Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1988) · Zbl 0634.26008
[43] Liu, K., Wu, L., Lü, J., Zhu, H.: Finite-time adaptive consensus of a class of multi-agent systems. Sci. China Technol. Sci. 59(1), 22-32 (2016) · doi:10.1007/s11431-015-5989-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.