×

Harmonic maps between Alexandrov spaces. (English) Zbl 1376.58004

In this paper, the authors study the existence, uniqueness and regularity of harmonic maps from an Alexandrov space into a geodesic space with curvature \(\leq 1\) in the sense of Alexandrov. Let \(X\) be an Alexandrov space of Hausdorff dimension \(n\) with curvature \(\geq k\) and an \(n\)-dimensional Hausdorff measure \(\mu\), \(\Omega \subset X\) be a bounded domain, and let \(Y\) be a complete geodesic space with curvature \(\leq 1\) in the sense of Alexandrov. Given \(\epsilon >0\) and a Borel measurable function \(u: \Omega \to Y\), the approximating energy functional \(E^u_\epsilon\) of \(u\) is defined as follows: For each compactly supported continuous function \(\varphi \in C_c(\Omega)\), \[ E^u_\epsilon(\varphi) := C_n \int_\Omega \varphi(x) d \mu(x) \int_{B_\epsilon(x)\cap \Omega} \frac{d^2(u(x), u(y))}{\epsilon^{n+2}}d \mu(y), \] where \(C_n\) is a normalized constant. And the energy functional of \(u\) is defined by \[ E^u(\varphi) = \limsup_{\epsilon \to 0} E^u_{\epsilon}(\varphi),\quad \forall \varphi \in C_c(\Omega). \] We say that \(u \in W^{1, 2}(\Omega, Y)\) if \(u \in L^2(\Omega)\) and it has finite energy \[ \sup_{\varphi\in C_c(\Omega), 0 \leq \varphi \leq 1} E^u(\varphi) <\infty. \] For a ball \(B_\rho(q) \subset Y\) with \(\rho< \pi/2\) and \(\varphi \in W^{1,2}(\Omega, Y)\) with \(\varphi(\Omega) \subset B_\rho(q)\), let \[ W^{1,2}_\varphi (\Omega, B_\rho(q)):= \{v \in W^{1,2}(\Omega, Y)\,:\, d(v, \varphi) \in W^{1,2}_0, v(\Omega) \subset B_\rho(q)\,\}. \]
The first result proved by authors in this paper is that \(W^{1,2}_\varphi (\Omega, B_\rho(q))\) has a unique element \(u\) of least energy. It is called the harmonic map on \(\Omega\) which agrees \(\varphi\) on \(\partial \Omega\). The second result is the regularity of harmonic maps given in the above. Assume both \(\Omega\) and \(X\setminus \overline{\Omega}\) satisfy the measure density condition, i.e., there exists a constant \(C >0\) such that \(\mu(B_r(x) \cap \Omega) \geq C \mu(B_r(x))\) and \(\mu(B_r(x) \cap X\setminus \overline{\Omega}) \geq C \mu(B_r(x))\) for \(x\in \overline{\Omega}\) and for all \(0<r <\min\{1, \text{Diam}(\Omega)\}\). Suppose that \(w \in W^{1,2}(X, Y)\) is Hölder continuous on \(\overline {\Omega}\) and the image \(w(X)\) is contained in a geodesic ball \(B_\rho(q)\subset Y\) with radius \(\rho < \pi/2\). The authors show that if \(u\) is the harmonic map on \(\Omega\) which agrees \(w\) on \(\partial \Omega\), then \(u\) is Hölder continuous on \(\overline{\Omega}\).

MSC:

58E20 Harmonic maps, etc.
53C43 Differential geometric aspects of harmonic maps
Full Text: DOI

References:

[1] Burago, Y., Gromov, M., Perelman, G.: A. D. Alexandrov spaces with curvatures bounded below. Russian Math. Surv. 47, 1-58 (1992) · Zbl 0802.53018 · doi:10.1070/RM1992v047n02ABEH000877
[2] Björn, J.: Boundary continuity for quasiminimizers on metric spaces. Ill. J. Math. 46(2), 383-403 (2002) · Zbl 1026.49029
[3] Björn, J., Shanmugalingam, N.: Poincaré inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces. J. Math. Anal. Appl. 332(1), 190-208 (2007) · Zbl 1132.46021 · doi:10.1016/j.jmaa.2006.09.064
[4] Burago, D., Burago Y., Ivanov, S.: A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33. AMS, New York (2001) · Zbl 0981.51016
[5] Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 428-517 (1999) · Zbl 0942.58018 · doi:10.1007/s000390050094
[6] Chen, J.: On energy minimizing mappings between and into singular spaces. Duke Math. J. 79, 77-99 (1995) · Zbl 0855.58015 · doi:10.1215/S0012-7094-95-07903-4
[7] Daskalopoulos, G., Mese, C.: Harmonic maps between singular spaces I. Commun. Anal. Geom. 18, 257-337 (2010) · Zbl 1229.53068 · doi:10.4310/CAG.2010.v18.n2.a2
[8] Eells, J., Fuglede, B.: Harmonic Maps Between Riemannian Polyhedra. Cambridge Tracts Mathsematics, vol. 142. Cambridge University Press, Cambridge (2001) · Zbl 0979.31001
[9] Fuglede, B.: Hölder continuity of harmonic maps from Riemannian polyhedra to spaces of upper bounded curvature. Calc. Var. PDE 16(4), 375-403 (2003) · Zbl 1025.31004 · doi:10.1007/s00526-002-0154-0
[10] Fuglede, B.: The Dirichlet problem for harmonic maps from Riemannian polyhedra to spaces of upper bounded curvature. Trans. Am. Math. Soc. 357(2), 757-792 (2005) · Zbl 1061.31008 · doi:10.1090/S0002-9947-04-03498-1
[11] Fuglede, B.: Harmonic maps from Riemannian polyhedra to geodesic spaces with curvature bounded from above. Calc. Var. PDE 31(1), 99-136 (2008) · Zbl 1133.58004 · doi:10.1007/s00526-007-0107-8
[12] Gregori, G.: Sobolev spaces and harmonic maps between singular spaces. Calc. Var. PDE 7, 1-18 (1998) · Zbl 0931.58006 · doi:10.1007/s005260050096
[13] Gromov, M., Schoen, R.: Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Publ. Math. IHES 76, 165-246 (1992) · Zbl 0896.58024 · doi:10.1007/BF02699433
[14] Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev classes of Banach space-valued functions and quasiconformal mappings. J. Anal. Math. 85, 87-139 (2001) · Zbl 1013.46023 · doi:10.1007/BF02788076
[15] Jost, J.: Equilibrium maps between metric spaces. Calc. Var. PDE 2(2), 173-204 (1994) · Zbl 0798.58021 · doi:10.1007/BF01191341
[16] Jost, J.: Generalized Dirichlet forms and harmonic maps. Calc. Var. PDE 5, 1-19 (1997) · Zbl 0868.31009 · doi:10.1007/s005260050056
[17] Korevaar, N., Schoen, R.: Sobolev spaces and harmonic maps for metric space targets. Commun. Anal. Geom. 1, 561-659 (1993) · Zbl 0862.58004 · doi:10.4310/CAG.1993.v1.n4.a4
[18] Kuwae, K., Machigashira, Y., Shioya, T.: Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces. Math. Z. 238(2), 269-316 (2001) · Zbl 1001.53017 · doi:10.1007/s002090100252
[19] Kuwae, K., Shioya, T.: Sobolev and Dirichlet spaces over maps between metric spaces. J. Reine Angew. Math. 555, 39-75 (2003) · Zbl 1053.46020
[20] Lin, F.H.: Analysis on Singular Spaces. Collection of Papers on Geometry, Analysis and Mathematical Physics, pp. 114-126. World Science Publications, River Edge (1997) · Zbl 1028.58019
[21] Otsu, Y., Shioya, T.: The Riemannian structure of Alexandrov spaces. J. Differ. Geom. 39, 629-658 (1994) · Zbl 0808.53061
[22] Perelman, G.: DC structure on Alexandrov spaces. Preprint, preliminary version available online at www.math.psu.edu/petrunin/ · Zbl 0942.58018
[23] Petrunin, A.: Semiconcave Functions in Alexandrov’s Geometry. Surveys in Differential Geometry XI: Metric and Comparison Geometry, pp. 137-201. International Press, Somerville (2007) · Zbl 1166.53001
[24] Reshetnyak, Y.G.: Sobolev classes of functions with values in a metric space. Sibirsk. Mat. Zh. 38(3), 657-675 (1997) · Zbl 0944.46024
[25] Reshetnyak, Y.G.: Sobolev classes of functions with values in a metric space II. Sibirsk. Mat. Zh. 45(4), 709-721 (2004) · Zbl 1085.46024 · doi:10.1023/B:SIMJ.0000035834.03736.b6
[26] Serbinowski, T.: Harmonic Maps into Metric Spaces with Curvature Bounded from above, Ph.D. Thesis: University of Utah (1995) · Zbl 1026.49029
[27] Shanmugalingam, N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16, 243-279 (2000) · Zbl 0974.46038 · doi:10.4171/RMI/275
[28] Zhang, H.C., Zhu, X.P.: Yau’s gradient estimates on Alexandrov spaces. J. Diff. Geom. 91, 445-522 (2012) · Zbl 1258.53075
[29] Zhang H.C., Zhu, X.P.: Lipschitz continuity of harmonic maps between Alexandrov spaces, available at arXiv:1311.1331 · Zbl 1409.58009
[30] Zhou, Z.-R.: A note on boundary regularity of subelliptic harmonic maps. Kodai Math. J. 28(3), 525-533 (2005) · Zbl 1107.58008 · doi:10.2996/kmj/1134397766
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.