×

On Gegenbauer polynomials and coefficients \(c^{\ell}_{j}(\nu )(1\leq j\leq \ell, \nu >-1/2)\). (English) Zbl 1376.33003

Summary: The Gegenbauer coefficients \(c^{\ell}_{j}(\nu )\) (\(1\leq j\leq \ell\), \(\nu >-1/2\)) appear in the Maclaurin expansion of the heat kernels on the \(n\)-sphere and the real projective \(n\)-space. In this note we show that these coefficients can be computed by transforming the higher order derivative formula for the Gegenbauer polynomials \(C_{k}^{\nu }\) (\(k\geq 0\), \(\nu >-1/2\)) into a spectral sum involving the powers of the eigenvalues of the associated Gegenbauer operator. We present explicit computations and various implications.

MSC:

33C05 Classical hypergeometric functions, \({}_2F_1\)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
35K08 Heat kernel
Full Text: DOI

References:

[1] Awonusika, R.O., Taheri, A.: Harmonic Analysis on Symmetric and Locally Symmetric Spaces. In preparation, pp. 504+iv (2017) · Zbl 1368.33002
[2] Awonusika, R.O., Taheri, A.: Spectral Invariants on Compact Symmetric Spaces: From Heat Trace to Functional Determinants (Submitted), pp. 262+ix (2017) · Zbl 1368.33002
[3] Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften, vol. 348. Springer (2014) · Zbl 1376.60002
[4] Berger, M., Gauduchon, P., Mazet, E.: Le spectre dúne variétè Riemannienne. Springer, Berlin (1971) · Zbl 0223.53034 · doi:10.1007/BFb0064643
[5] Morris, C., Taheri, A.: On Weyl’s asymptotics and remainder term for the orthogonal and unitary groups. J. Fourier Anal. Appl. (2017). doi:10.1007/s00041-017-9522-1 · Zbl 1385.58005
[6] Mueller, C.E., Weissler, F.B.: Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the \[n\] n-sphere. J. Funct. Anal. 48, 252-283 (1982) · Zbl 0506.46022 · doi:10.1016/0022-1236(82)90069-6
[7] Osgood, B., Phillips, R., Sarnak, P.: Extremals and determinants of Laplacians. J. Funct. Anal. 80, 148-211 (1988) · Zbl 0653.53022 · doi:10.1016/0022-1236(88)90070-5
[8] Polterovich, I.: Combinatorics of the heat trace on spheres. Can. J. Math. 54, 1086-1099 (2001) · Zbl 1034.58022 · doi:10.4153/CJM-2002-040-4
[9] Sarnak, P.: Determinants of Laplacians. Comm. Math. Phys. 110, 113-120 (1987) · Zbl 0618.10023 · doi:10.1007/BF01209019
[10] Sarnak, P.: Determinants of Laplacians: heights and finiteness, In: Analysis, et cetera. Academic Press, Boston (1990) · Zbl 0703.53037
[11] Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971) · Zbl 0232.42007
[12] Taheri, A.: Function Spaces and Partial Differential Equations, I & II, Oxford Lecture Series in Mathematics and Its Applications, vols. 40 & 41, OUP (2015) · Zbl 1336.46001
[13] Vilenkin, N.J.: Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, vol. 22, AMS (1968) · Zbl 0172.18404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.