×

Geometric algebra to model uncertainties in the discretizable molecular distance geometry problem. (English) Zbl 1373.92148

Summary: The discretizable molecular distance geometry problem (DMDGP) is related to the determination of 3D protein structure using distance information detected by nuclear magnetic resonance (NMR) experiments. The chemistry of proteins and the NMR distance information allow us to define an atomic order \(v_1,\dots,v_n\) such that the distances related to the pairs \(\{v_{i-3},v_i\}, \{v_{i-2},v_i\}, \{v_{i-1},v_i\}\), for \(i>3\), are available, which implies that the search space can be represented by a tree. A DMDGP solution can be represented by a path from the root to a leaf node of this tree, found by an exact method, called branch-and-prune (BP). Because of uncertainty in NMR data, some of the distances related to the pairs \(\{v_{i-3},v_i\}\) may not be precise values, being represented by intervals of real numbers \([\underline d_{i-3,i},\overline d_{i-3,i}]\). In order to apply BP algorithm in this context, sample values from those intervals should be taken. The main problem of this approach is that if we sample many values, the search space increases drastically, and for small samples, no solution can be found. We explain how geometric algebra can be used to model uncertainties in the DMDGP, avoiding sample values from intervals \([\underline d_{i-3,i},\overline d_{i-3,i}]\) and eliminating the heuristic characteristics of BP when dealing with interval distances.

MSC:

92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
Full Text: DOI

References:

[1] Berger B., Kleinberg J., Leighton T.: Reconstructing a three-dimensional model with arbitrary errors. J. ACM 46, 212-235 (1999) · Zbl 1065.68574 · doi:10.1145/301970.301972
[2] Cassioli A., Bordeaux B., Bouvier G., Mucherino A., Alves R., Liberti L., Nilges M., Lavor C., Malliavin T.: An algorithm to enumerate all possible protein conformations verifying a set of distance constraints. BMC Bioinform. 16, 16-23 (2015) · doi:10.1186/s12859-015-0451-1
[3] Cassioli A., Gunluk O., Lavor C., Liberti L.: Discretization vertex orders in distance geometry. Discrete Appl. Math. 197, 27-41 (2015) · Zbl 1321.05029 · doi:10.1016/j.dam.2014.08.035
[4] Crippen G., Havel T.: Distance Geometry and Molecular Conformation. Wiley, New York (1988) · Zbl 1066.51500
[5] Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry. The Morgan Kaufmann Series in Computer Graphics (2007) · Zbl 1272.90074
[6] Franchini, S., Vassalo, G., Sorbello, F.: A brief introduction to Clifford algebra. Technical report no. 2/2010. Dipartimento di Ingegneria Informatica, Università degli Studi di Palermo (2010)
[7] Havel, T.: Distance geometry. In: Grant, D., Harris, R. (eds.) Encyclopedia of Nuclear Magnetic Resonance, pp. 1701-1710. Wiley, New York (1995)
[8] Hestenes, D.: Old wine in new bottles: a new algebraic framework for computational geometry. In: Advances in Geometric Algebra with Applications in Science and Engineering, pp. 1-14 (2001) · Zbl 1327.15052
[9] Hildenbrand D.: Foundations of Geometric Algebra Computing. Springer, Berlin (2012) · Zbl 1268.65038 · doi:10.1063/1.4756054
[10] Hildenbrand, D.: Home page of Gaalop. http://www.gaalop.de
[11] Hildenbrand, D., Fontijne, D., Perwass, C., Dorst, L.: Geometric algebra and its application to computer graphics. Tutorial 3. In: Proceedings of Eurographics (2004) · Zbl 1292.51010
[12] Lavor C., Liberti L., Maculan N., Mucherino A.: Recent advances on the discretizable molecular distance geometry problem. Eur. J. Oper. Res. 219, 698-706 (2012) · Zbl 1253.05132 · doi:10.1016/j.ejor.2011.11.007
[13] Lavor C., Liberti L., Maculan N., Mucherino A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115-146 (2012) · Zbl 1259.90153 · doi:10.1007/s10589-011-9402-6
[14] Lavor C., Liberti L., Mucherino A.: The interval BP algorithm for the discretizable molecular distance geometry problem with interval data. J. Global Optim. 56, 855-871 (2013) · Zbl 1272.90074 · doi:10.1007/s10898-011-9799-6
[15] Lavor C., Alves R., Figueiredo W., Petraglia A., Maculan N.: Clifford algebra and the discretizable molecular distance geometry problem. Adv. Appl. Clifford Algebra 25, 925-942 (2015) · Zbl 1327.15052 · doi:10.1007/s00006-015-0532-2
[16] Liberti L., Lavor C., Maculan N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1-17 (2008) · Zbl 1136.92037 · doi:10.1111/j.1475-3995.2007.00622.x
[17] Liberti L., Lavor C., Mucherino A., Maculan N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33-51 (2010) · Zbl 1219.90177 · doi:10.1111/j.1475-3995.2009.00757.x
[18] Liberti L., Lavor C., Maculan N., Mucherino A.: Euclidean distance geometry and applications. SIAM Rev. 56, 3-69 (2014) · Zbl 1292.51010 · doi:10.1137/120875909
[19] Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry: Theory, Methods, and Applications. Springer, New York (2013) · Zbl 1256.51002
[20] Perwass, C.: Geometric Algebra with Applications in Engineering. Springer (2009) · Zbl 1179.15025
[21] Pesonen J., Henriksson O.: Polymer conformations in internal (polyspherical) coordinates. J. Comput. Chem. 31, 1874-1881 (2009)
[22] Souza M., Lavor C., Muritiba A., Maculan N.: Solving the molecular distance geometry problem with inaccurate distance data. BMC Bioinform. 14, S71-S76 (2013) · doi:10.1186/1471-2105-14-S9-S7
[23] Wütrich K.: Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243, 45-50 (1989) · doi:10.1126/science.2911719
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.