×

Parameter estimation for inhomogeneous space-time shot-noise Cox point processes. (English) Zbl 1373.62470

Summary: We consider the problem of parameter estimation for inhomogeneous space-time shot-noise Cox point processes. We explore the possibility of using a stepwise estimation method and dimensionality-reducing techniques to estimate different parts of the model separately.
We discuss the estimation method using projection processes and propose a refined method that avoids projection to the temporal domain. This remedies the main flaw of the method using projection processes – possible overlapping in the projection process of clusters, which are clearly separated in the original space-time process. This issue is more prominent in the temporal projection process where the amount of information lost by projection is higher than in the spatial projection process.
For the refined method, we derive consistency and asymptotic normality results under the increasing domain asymptotics and appropriate moment and mixing assumptions. We also present a simulation study that suggests that cluster overlapping is successfully overcome by the refined method.

MSC:

62M30 Inference from spatial processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)

Software:

spatstat; spatial
Full Text: DOI

References:

[1] Baddeley, A. J., Møller, J. & Waagepetersen, R. P. (2000). Non‐ and semiparametric estimation of interaction in inhomogeneous point patterns. Stat. Neerl.54, 329-350. · Zbl 1018.62027
[2] Baddeley, A. & Turner, R. (2005). Spatstat: An R package for analyzing spatial point patterns. J. Stat. Software12, (6), 1-42.
[3] Beneš, V., Prokešová, M., Helisová, K. & Zikmundová, M. (2015). Space‐time models in stochastic geometry. In Stochastic geometry, spatial statistics and random fields, vol. 2120 (ed Schmidt V (ed.)), Lecture Notes in Mathematics. Springer International Publishing, Heidelberg, 205-232. · Zbl 1366.60021
[4] Brix, A. & Diggle, P. J. (2001). Spatiotemporal prediction for log‐Gaussian Cox processes. J. Roy. Stat. Soc. Ser. B. Stat. Methodol.63, (4), 823-841. · Zbl 0996.62076
[5] Brix, A. & Møller, J. (2001). Space‐time multi type log Gaussian Cox processes with a view to modeling weed data. Scand. J. Stat.28, 471-488. · Zbl 0981.62079
[6] Daley, D. J. & Vere‐Jones, D. (2003). An introduction to the theory of point processes. Volume I: elementary theory and methods, 2, Springer‐Verlag, New York. · Zbl 1026.60061
[7] Daley, D. J. & Vere‐Jones, D. (2008). An introduction to the theory of point processes. Volume II: general theory and structure, 2, Springer‐Verlag, New York. · Zbl 1159.60003
[8] Diggle, P. J. (1983). Statistical analysis of spatial point patterns, Mathematics in biology, Academic Press, London. · Zbl 0559.62088
[9] Diggle, P. J. (2003). Statistical analysis of spatial point patterns, Mathematics in biology, Arnold, London. · Zbl 1021.62076
[10] Diggle, P. J. (2007). Spatio‐temporal point processes: Methods and applications. In Statistical methods for spatio‐temporal systems (eds BFinkenstädt (ed.), LHeld (ed.) & V Isham (ed.)). Chapman and Hall/CRC, Boca Raton.
[11] Diggle, P. J., Kaimi, I. & Abellana, R. (2010). Partial‐likelihood analysis of spatio‐temporal point‐process data. Biometrics66, (2), 347-354. · Zbl 1192.62192
[12] Doukhan, P. (1994). Mixing: Properties and examples, Lecture notes in statistics, Springer‐Verlag, New York. · Zbl 0801.60027
[13] Dvořák, J. & Prokešová, M. (2012). Moment estimation methods for stationary spatial Cox processes – a comparison. Kybernetika (Prague)48, (5), 1007-1026. · Zbl 1297.62201
[14] Gabriel, E. (2014). Estimating second‐order characteristics of inhomogeneous spatio‐temporal point processes. Methodol. Comput. Appl. Probab.16, (2), 411-431. · Zbl 1308.60061
[15] Gabriel, E. & Diggle, P. J. (2009). Second‐order analysis of inhomogeneous spatio‐temporal point process data. Stat. Neerl.63, (1), 43-51. · Zbl 07882057
[16] Guan, Y. (2009). A minimum contrast estimation procedure for estimating the second‐order parameters of inhomogeneous spatial point processes. Stat. Interface2, 91-99. · Zbl 1245.62101
[17] Hellmund, G., Prokešová, M. & Jensen, E. B. V. (2008). Lévy‐based Cox point processes. Adv. in Appl. Probab.40, 603-629. · Zbl 1149.60031
[18] Illian, J., Penttinen, A., Stoyan, H. & Stoyan, D. (2008). Statistical analysis and modelling of spatial point patterns, Wiley, Chichester. · Zbl 1197.62135
[19] Li, Y. & Guan, Y. (2014). Functional principal component analysis of spatiotemporal point processes with applications in disease surveillance. J. Amer. Statist. Assoc.109, (507), 1205-1215. · Zbl 1368.62161
[20] Møller, J. & Waagepetersen, R. P. (2004). Statistical inference and simulation for spatial point processes, Chapman & Hall/CRC, Boca Raton. · Zbl 1044.62101
[21] Møller, J. (2003). Shot noise Cox processes. Adv. in Appl. Probab.35, 614-640. · Zbl 1045.60007
[22] Møller, J. & Ghorbani, M. (2012). Aspects of second‐order analysis of structured inhomogeneous spatio‐temporal point processes. Stat. Neerl.66, (4), 472-491.
[23] Prokešová, M. & Dvořák, J. (2014). Statistics for inhomogeneous space‐time shot‐noise Cox processes. Methodol. Comput. Appl. Probab.16, (2), 433-449. · Zbl 1305.62338
[24] Ripley, B. D. (1988). Statistical inference for spatial processes, Cambridge University Press, Cambridge. · Zbl 0705.62090
[25] Stoyan, D., Kendall, W. S. & Mecke, J. (1995). Stochastic geometry and its applications, Wiley Series in Probability and Mathematical Statistics, Wiley, Chichester. · Zbl 0838.60002
[26] Waagepetersen, R. P. & Guan, Y. (2009). Two‐step estimation for inhomogeneous spatial point processes. J. Roy. Stat. Soc. Ser. B. Stat. Methodol.71, 685-702. · Zbl 1250.62047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.