×

Quantum \(\mathcal{D}\)-modules for toric nef complete intersections. (English) Zbl 1373.14056

Let \(Z\) be smooth projective variety over \(\mathbb C\) and let QDM\((Z)\) be the quantum \(\mathcal D\)-module of \(Z\). Givental gives presentation of QDM\((Z)\)in terms of GKZ systems by proving the isomorphism QDM\((Z)\cong \mathcal D/\mathcal G_Z\) in the case that \(Z\) is toric and Fano. Here \(\mathcal G_Z\) is the GKZ ideal associated to \(Z\).
The paper under review studies the case where \(Z\) is a nef complete intersection inside a smooth toric variety \(X\). Let \(\mathcal L_1,\dots \mathcal L_k\) be ample line bundles on \(X\) and \(i:Z\to X\) be the inclusion of the zero locus of a generic section of the vector bundle \(\mathcal E:=\oplus \mathcal L_i\). The subspace \(i^*(H^*(X,\mathbb C))\subseteq H^*(Z,\mathbb C)\), denoted by \(H^*_{\mathrm{amb}}(Z)\), is stable under small quantum cohomology product of \(Z\). Let QDM\(_{\mathrm{amb}}(Z)\) be the corresponding sub-\(\mathcal D\)-module. The main result of the paper under review is the following giving an answer to a question posed by Cox and Katz: Let \(\widehat{c}_{top}\in \mathcal D\) be the operator associated to the top Chern class of the vector bundle \(\mathcal E\), and \((\mathcal G_{X,\mathcal E}:\widehat{c}_{top})\) be the left quotient ideal of the GKZ ideal associated to \(X\) and \(\mathcal E\). If \(\dim_{\mathbb C} X\geq k+3\) then there is an isomorphism of the \(\mathcal D\)-modules QDM\(_{\mathrm{amb}}(Z)\cong \mathcal D/(\mathcal G_{X,\mathcal E}:\widehat{c}_{\mathrm{top}})\).
This result has been used to prove a mirror theorem for non-affine Landau-Ginzburg model.

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials

References:

[1] Adolphson, A., Hypergeometric functions and rings generated by monomials, Duke Math. J.73(2) (1994) 269-290. · Zbl 0804.33013
[2] S. Barannikov, Semi-infinite Hodge structures and mirror symmetry for projective spaces, preprint (2000), Math.AG/0010157.
[3] Batyrev, V. V., Quantum cohomology rings of toric manifolds, Astérisque218 (1993) 9-34. · Zbl 0806.14041
[4] Batyrev, V. V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom.3(3) (1994) 493-535. · Zbl 0829.14023
[5] Behrend, K., Gromov-Witten invariants in algebraic geometry, Invent. Math.127(3) (1997) 601-617. · Zbl 0909.14007
[6] Behrend, K. and Fantechi, B., The intrinsic normal cone, Invent. Math.128(1) (1997) 45-88. · Zbl 0909.14006
[7] Behrend, K. and Manin, Yu., Stacks of stable maps and Gromov-Witten invariants, Duke Math. J.85(1) (1996) 1-60. · Zbl 0872.14019
[8] Bruns, W. and Herzog, J., Cohen-Macaulay Rings, , Vol. 39 (Cambridge University Press, Cambridge, 1993). · Zbl 0788.13005
[9] Coates, T. and Givental, A., Quantum Riemann-Roch, Lefschetz and Serre, Ann. of Math. (2)165(1) (2007) 15-53. · Zbl 1189.14063
[10] Coates, T., Lee, Y.-P., Corti, A. and Tseng, H.-H., The quantum orbifold cohomology of weighted projective spaces, Acta Math.202(2) (2009) 139-193. · Zbl 1213.53106
[11] Cox, D. A. and Katz, S., Mirror Symmetry and Algebraic Geometry, , Vol. 68 (American Mathematical Society, Providence, RI, 1999). · Zbl 0951.14026
[12] Cox, D. A., Little, J. B. and Schenck, H. K., Toric Varieties, , Vol. 124 (American Mathematical Society, Providence, RI, 2011), xxiv+841 pp. · Zbl 1223.14001
[13] Cox, D. A. and von Renesse, C., Primitive collections and toric varieties, Tohoku Math. J. (2)61(3) (2009) 309-332. · Zbl 1185.14045
[14] Andrea, M., de Cataldo, A. and Migliorini, L., The hard Lefschetz theorem and the topology of semismall maps, Ann. Sci. École Norm. Sup. (4)35(5) (2002) 759-772. · Zbl 1021.14004
[15] Fulton, W., Introduction to Toric Varieties, , Vol. 131 (Princeton University Press, Princeton, NJ, 1993). The William H. Roever Lectures in Geometry. · Zbl 0813.14039
[16] Fulton, W. and Pandharipande, R., Notes on stable maps and quantum cohomology, in Algebraic Geometry, , Vol. 62 (American Mathematical Society, Providence, RI, 1997), pp. 45-96. · Zbl 0898.14018
[17] Gel’fand, I. M., Graev, M. I. and Zelevinskiĭ, A. V., Holonomic systems of equations and series of hypergeometric type, Dokl. Akad. Nauk SSSR295(1) (1987) 14-19. · Zbl 0661.22005
[18] Gel’fand, I. M., Kapranov, M. M. and Zelevinsky, A. V., Generalized Euler integrals and \(A\)-hypergeometric functions, Adv. Math.84(2) (1990) 255-271. · Zbl 0741.33011
[19] Gel’fand, I. M., Zelevinskiĭ, A. V. and Kapranov, M. M., Equations of hypergeometric type and Newton polyhedra, Dokl. Akad. Nauk SSSR300(3) (1988) 529-534. · Zbl 0667.33010
[20] Gel’fand, I. M., Zelevinskiĭ, A. V. and Kapranov, M. M., Hypergeometric functions and toric varieties, Funktsional. Anal. i Prilozhen.23(2) (1989) 12-26.
[21] Givental, A. B., Homological geometry. I. Projective hypersurfaces, Selecta Math. (N.S.)1(2) (1995) 325-345. · Zbl 0920.14028
[22] Givental, A. B., Equivariant Gromov-Witten invariants, Int. Math. Res. Not.1996(13) (1996) 613-663. · Zbl 0881.55006
[23] Givental, A., A mirror theorem for toric complete intersections, in Topological Field Theory, Primitive Forms and Related Topics, , Vol. 160 (Birkhäuser Boston, Boston, MA, 1998), pp. 141-175. · Zbl 0936.14031
[24] Golyshev, V. V., Classification problems and mirror duality, in Surveys in Geometry and Number Theory: Reports on Contemporary Russian Mathematics, , Vol. 338 (Cambridge University Press, Cambridge, 2007), pp. 88-121. · Zbl 1114.14024
[25] Guest, M. A., Differential equations aspects of quantum cohomology, in Geometric and Topological Methods for Quantum Field Theory (Cambridge University Press, Cambridge, 2010), pp. 54-85. · Zbl 1210.81024
[26] Guest, M. and Sakai, H., Orbifold quantum \(D\)-modules associated to weighted projective spaces, Comment. Math. Helv.89(2) (2014) 273-297. · Zbl 1396.53115
[27] Hertling, C., \(t t^\ast\) geometry and mixed Hodge structures, in Singularity Theory and its Applications, , Vol. 43 (Mathematical Society, Japan, Tokyo, 2006), pp. 73-84. · Zbl 1127.14300
[28] R. Hotta, K. Takeuchi and T. Tanisaki, \(D\)-modules, perverse sheaves, and representation theory, Progress in Mathematics, Vol. 236 (Birkhäuser Boston, Boston, MA, 2008). Translated from the 1995 Japanese edition by Takeuchi. · Zbl 1136.14009
[29] Iritani, H., Quantum \(D\)-modules and equivariant Floer theory for free loop spaces, Math. Z.252(3) (2006) 577-622. · Zbl 1121.53062
[30] Iritani, H., Convergence of quantum cohomology by quantum Lefschetz, J. Reine Angew. Math.610 (2007) 29-69. · Zbl 1160.14044
[31] Iritani, H., Quantum \(D\)-modules and generalized mirror transformations, Topology47(4) (2008) 225-276. · Zbl 1170.53071
[32] Iritani, H., An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math.222(3) (2009) 1016-1079. · Zbl 1190.14054
[33] Iritani, H., Quantum cohomology and periods, Ann. Inst. Fourier (Grenoble)61(7) (2011) 2909-2958. · Zbl 1300.14055
[34] L. Katzarkov, M. Kontsevich and T. Pantev, Hodge theoretic aspects of mirror symmetry, preprint (2008), arXiv:0806.0107. · Zbl 1206.14009
[35] Kim, B., Quantum hyperplane section theorem for homogeneous spaces, Acta Math.183(1) (1999) 71-99. · Zbl 1023.14028
[36] Kontsevich, M., Homological algebra of mirror symmetry, in Proc. Int. Congr. Mathematicians, Vols. 1 and 2 (Birkhäuser, 1995), pp. 120-139. · Zbl 0846.53021
[37] Lian, B. H., Liu, K. and Yau, S.-T., Mirror principle. I, in Surveys in Differential Geometry: Differential Geometry Inspired by String Theory, Surveys in Differential Geometry, Vol. 5, (International Press, Boston, MA, 1999), pp. 405-454. · Zbl 0959.00007
[38] Lyubeznik, G., A new explicit finite free resolution of ideals generated by monomials in an \(R\)-sequence, J. Pure Appl. Algebra51(1-2) (1988) 193-195. · Zbl 0652.13012
[39] R. Marsh and K. Rietsch, The \(B\)-model connection and mirror symmetry for Grassmannians, preprint (2013), arXiv:1307.1085. · Zbl 1453.14104
[40] Matsumura, H., Commutative Ring Theory, , Vol. 8 (Cambridge University Press, Cambridge, 1986). Translated from the Japanese by M. Reid. · Zbl 0603.13001
[41] Mavlyutov, A. R., On the chiral ring of Calabi-Yau hypersurfaces in toric varieties, Compositio Math.138(3) (2003) 289-336. · Zbl 1117.14052
[42] Pech, C., Rietsch, K. and Williams, L., On Landau-Ginzburg models for quadrics and flat sections of Dubrovin connections, Adv. Math.300 (2016) 275-319. · Zbl 1359.53072
[43] T. Reichelt and C. Sevenheck, Non-affine Landau-Ginzburg models and intersection cohomology, preprint (2012), arXiv:1210.6527. · Zbl 1395.14033
[44] Reichelt, T. and Sevenheck, C., Logarithmic Frobenius manifolds, hypergeometric systems and quantum \(D\)-modules, J. Algebraic Geom.24(2) (2015) 201-281. · Zbl 1349.14139
[45] Rietsch, K., A mirror symmetric solution to the quantum Toda lattice, Comm. Math. Phys.309(1) (2012) 23-49. · Zbl 1256.14042
[46] Sabbah, C., Polarizable twistor \(D\)-modules, Astérisque300 (2005) vi+208. · Zbl 1085.32014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.