×

Geometry and dynamics of Gaussian Wave packets and their Wigner transforms. (English) Zbl 1372.81104

Summary: We find a relationship between the dynamics of the Gaussian wave packet and the dynamics of the corresponding Gaussian Wigner function from the Hamiltonian/symplectic point of view. The main result states that the momentum map corresponding to the natural action of the symplectic group on the Siegel upper half space yields the covariance matrix of the corresponding Gaussian Wigner function. This fact, combined with Kostant’s coadjoint orbit covering theorem, establishes a symplectic/Poisson-geometric connection between the two dynamics. The Hamiltonian formulation naturally gives rise to corrections to the potential terms in the dynamics of both the wave packet and the Wigner function, thereby resulting in slightly different sets of equations from the conventional classical ones. We numerically investigate the effect of the correction term and demonstrate that it improves the accuracy of the dynamics as an approximation to the dynamics of expectation values of observables.{
©2017 American Institute of Physics}

MSC:

81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
81R30 Coherent states
70H05 Hamilton’s equations
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
53D20 Momentum maps; symplectic reduction

References:

[1] Abraham, R.; Marsden, J. E., Foundations of Mechanics (1978) · Zbl 0393.70001
[2] Berceanu, S., Coherent states associated to the Jacobi group—A variation on a theme by Erich Kähler, J. Geom. Symmetry Phys., 9, 1-8 (2007) · Zbl 1143.81015 · doi:10.7546/jgsp-9-2007-1-8
[3] Bialynicki-Birula, I.; Morrison, P. J., Quantum mechanics as a generalization of nambu dynamics to the Weyl-Wigner formalism, Phys. Lett. A, 158, 9, 453-457 (1991) · doi:10.1016/0375-9601(91)90458-k
[4] Bloch, A. M.; Brînzănescu, V.; Iserles, A.; Marsden, J. E.; Ratiu, T. S., A class of integrable flows on the space of symmetric matrices, Commun. Math. Phys., 290, 2, 399-435 (2009) · Zbl 1231.37030 · doi:10.1007/s00220-009-0849-6
[5] Bonet-Luz, E.; Tronci, C., Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states, Proc. R. Soc. A, 472, 2189 (2016) · Zbl 1371.81034 · doi:10.1098/rspa.2015.0777
[6] Combescure, M.; Robert, D., Coherent States and Applications in Mathematical Physics (2012) · Zbl 1243.81004
[7] de Gosson, M. A., Symplectic Methods in Harmonic Analysis and in Mathematical Physics (2011) · Zbl 1247.81510
[8] Egorov, Y. V., The canonical transformations of pseudodifferential operators, Uspekhi Mat. Nauk, 24, 5-149, 235-236 (1969) · Zbl 0191.43802
[9] Faou, E.; Lubich, C., A Poisson integrator for Gaussian wavepacket dynamics, Comput. Visualization Sci., 9, 2, 45-55 (2006) · Zbl 1511.65108 · doi:10.1007/s00791-006-0019-8
[10] Folland, G. B., Harmonic Analysis in Phase Space (1989) · Zbl 0682.43001
[11] Garcia-Bondia, J. M.; Várilly, J. C., Nonnegative mixed states in Weyl-Wigner-Moyal theory, Phys. Lett. A, 128, 20-24 (1988) · doi:10.1016/0375-9601(88)91035-3
[12] Gay-Balmaz, F.; Tronci, C., Vlasov moment flows and geodesics on the Jacobi group, J. Math. Phys., 53, 12, 123502 (2012) · Zbl 1287.37045 · doi:10.1063/1.4763467
[13] Graefe, E.-M.; Schubert, R., Wave-packet evolution in non-Hermitian quantum systems, Phys. Rev. A, 83, 6, 060101(R) (2011) · doi:10.1103/physreva.83.060101
[14] Groenewold, H. J., On the principles of elementary quantum mechanics, Physica, 12, 7, 405-460 (1946) · Zbl 0060.45002 · doi:10.1016/s0031-8914(46)80059-4
[15] Guillemin, V.; Sternberg, S., The moment map and collective motion, Ann. Phys., 127, 1, 220-253 (1980) · Zbl 0453.58015 · doi:10.1016/0003-4916(80)90155-4
[16] Guillemin, V.; Sternberg, S., Symplectic Techniques in Physics (1990) · Zbl 0734.58005
[17] Hagedorn, G. A., Semiclassical quantum mechanics, Commun. Math. Phys., 71, 1, 77-93 (1980) · doi:10.1007/bf01230088
[18] Hagedorn, G. A., Semiclassical quantum mechanics. III. The large order asymptotics and more general states, Ann. Phys., 135, 1, 58-70 (1981) · doi:10.1016/0003-4916(81)90143-3
[19] Hagedorn, G. A., Semiclassical quantum mechanics, IV: Large order asymptotics and more general states in more than one dimension, Ann. Inst. Henri Poincare, Sect. A, 42, 4, 363-374 (1985) · Zbl 0900.81053
[20] Hagedorn, G. A., Raising and lowering operators for semiclassical wave packets, Ann. Phys., 269, 1, 77-104 (1998) · Zbl 0929.34067 · doi:10.1006/aphy.1998.5843
[21] Heller, E. J., Time-dependent approach to semiclassical dynamics, J. Chem. Phys., 62, 4, 1544-1555 (1975) · doi:10.1063/1.430620
[22] Heller, E. J., Classical S-matrix limit of wave packet dynamics, J. Chem. Phys., 65, 11, 4979-4989 (1976) · doi:10.1063/1.432974
[23] Holm, D. D.; Tronci, C., Geodesic Vlasov equations and their integrable moment closures, J. Geom. Mech., 1, 2, 181-208 (2009) · Zbl 1190.82033 · doi:10.3934/jgm.2009.1.181
[24] Jensen, F., Introduction to Computational Chemistry (2007)
[25] Kostant, B., Orbits, symplectic structures and representation theory (1966) · Zbl 0141.02701
[26] Krishnaprasad, P. S.; Marsden, J. E., Hamiltonian structures and stability for rigid bodies with flexible attachments, Arch. Ration. Mech. Anal., 98, 1, 71-93 (1987) · Zbl 0624.58010 · doi:10.1007/bf00279963
[27] Lasser, C.; Röblitz, S., Computing expectation values for molecular quantum dynamics, SIAM J. Sci. Comput., 32, 3, 1465-1483 (2010) · Zbl 1211.81104 · doi:10.1137/090770461
[28] Littlejohn, R. G., The semiclassical evolution of wave packets, Phys. Rep., 138, 4-5, 193-291 (1986) · doi:10.1016/0370-1573(86)90103-1
[29] Lubich, C., From quantum to classical molecular dynamics: Reduced models and numerical analysis (2008) · Zbl 1160.81001
[30] Marsden, J. E.; Ratiu, T. S., Introduction to Mechanics and Symmetry (1999) · Zbl 0933.70003
[31] Marsden, J. E.; Weinstein, A., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5, 1, 121-130 (1974) · Zbl 0327.58005 · doi:10.1016/0034-4877(74)90021-4
[32] Marsden, J. E.; Misiolek, G.; Ortega, J. P.; Perlmutter, M.; Ratiu, T. S., Hamiltonian Reduction by Stages (2007) · Zbl 1129.37001
[33] McDuff, D.; Salamon, D., Introduction to Symplectic Topology (1999)
[34] Miller, W. H., Classical S matrix: Numerical application to inelastic collisions, J. Chem. Phys., 53, 9, 3578-3587 (1970) · doi:10.1063/1.1674535
[35] Miller, W. H., Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants, J. Chem. Phys., 61, 5, 1823-1834 (1974) · doi:10.1063/1.1682181
[36] Miller, W. H., The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations, J. Phys. Chem. A, 105, 13, 2942-2955 (2001) · doi:10.1021/jp003712k
[37] Moyal, J. E., Quantum mechanics as a statistical theory, Math. Proc. Cambridge Philos. Soc., 45, 1, 99-124 (1949) · Zbl 0031.33601 · doi:10.1017/s0305004100000487
[41] Ohsawa, T., Symmetry and conservation laws in semiclassical wave packet dynamics, J. Math. Phys., 56(3), 032103 (2015) · Zbl 1308.81096 · doi:10.1063/1.4914338
[42] Ohsawa, T., The Siegel upper half space is a Marsden-Weinstein quotient: Symplectic reduction and Gaussian wave packets, Lett. Math. Phys., 105, 9, 1301-1320 (2015) · Zbl 1371.37111 · doi:10.1007/s11005-015-0780-z
[43] Ohsawa, T.; Leok, M., Symplectic semiclassical wave packet dynamics, J. Phys. A: Math. Theor., 46, 40, 405201 (2013) · Zbl 1278.81087 · doi:10.1088/1751-8113/46/40/405201
[44] Pattanayak, A. K.; Schieve, W. C., Gaussian wave-packet dynamics: Semiquantal and semiclassical phase-space formalism, Phys. Rev. E, 50, 5, 3601-3615 (1994) · doi:10.1103/physreve.50.3601
[45] Perelomov, A. M., Generalized Coherent States and Their Applications. Theoretical and Mathematical Physics (1986) · Zbl 0605.22013
[46] Prezhdo, O. V.; Pereverzev, Y. V., Quantized Hamilton dynamics, J. Chem. Phys., 113, 16, 6557-6565 (2000) · doi:10.1063/1.1290288
[47] Siegel, C. L., Symplectic geometry, Am. J. Math., 65, 1, 1-86 (1943) · Zbl 0063.07003 · doi:10.2307/2371774
[48] Simon, R.; Sudarshan, E. C. G.; Mukunda, N. M., Gaussian Wigner distributions: A complete characterization, Phys. Lett. A, 124, 223-228 (1987) · doi:10.1016/0375-9601(87)90625-6
[49] Verlet, L., Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 159, 1, 98-103 (1967) · doi:10.1103/physrev.159.98
[50] Wang, H.; Sun, X.; Miller, W. H., Semiclassical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems, J. Chem. Phys., 108, 23, 9726-9736 (1998) · doi:10.1063/1.476447
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.