×

A nonhomogeneous fractional \(p\)-Kirchhoff type problem involving critical exponent in \(\mathbb{R}^N\). (English) Zbl 1372.35348

Summary: This paper concerns itself with the nonexistence and multiplicity of solutions for the following fractional Kirchhoff-type problem involving the critical Sobolev exponent: \[ \left[a+b\left(\iint_{\mathbb{R}^{2N}}\frac{| u(x)-u(y)|^p}{| x-y|^{N+ps}}dxdy\right)^{\theta-1}\right](-\Delta)^s_p u=| u |^{p^\ast_s-2}u+\lambda f(x)\quad \text{in }\mathbb{R}^N, \] where \(a\geq0\), \(b>0\), \(\theta>1\), \((-\Delta)_p^s\) is the fractional \(p\)-Laplacian with \(0<s<1\) and \(1<p<N/s\), \(p_s^\ast=Np/(N-ps)\) is the critical Sobolev exponent, \(\lambda\geq0\) is a parameter, and \(f\in L^{p_s^\ast/(p_s^\ast-1)}(\mathbb{R}^N)\setminus\{0\}\) is a nonnegative function. When \(\lambda=0\), we show that the multiplicity and nonexistence of solutions for the above problem are related with \(N\), \(\theta\), \(s\), \(p\), \(a\), and \(b\). When \(\lambda>0\), by using Ekeland’s variational principle and the mountain pass theorem, we show that there exists \(\lambda^{**}>0\) such that the above problem admits at least two nonnegative solutions for all \(\lambda\in (0,\lambda^{**})\). In the latter case, in order to overcome the loss of compactness, we derive a fractional version of the principle of concentration compactness in the setting of the fractional \(p\)-Laplacian.

MSC:

35R11 Fractional partial differential equations
35A15 Variational methods applied to PDEs
35B33 Critical exponents in context of PDEs
47G20 Integro-differential operators
Full Text: DOI

References:

[1] C. O. Alves, Multiple positive solutions for semilinear elliptic equations in \(\mathbb{R}^N\) involving critical exponents, Electron. J. Differential Equations 13 (1997), 1-10.; Alves, C. O., Multiple positive solutions for semilinear elliptic equations in \(\mathbb{R}^N\) involving critical exponents, Electron. J. Differential Equations, 13, 1-10 (1997) · Zbl 0886.35056
[2] C. O. Alves, J. V. Goncalves and O. H. Miyagaki, Multiple positive solutions for semilinear elliptic equations in \(\mathbb{R}^N\) involving critical exponents, Nonlinear Anal. 32 (1998), 41-51.; Alves, C. O.; Goncalves, J. V.; Miyagaki, O. H., Multiple positive solutions for semilinear elliptic equations in \(\mathbb{R}^N\) involving critical exponents, Nonlinear Anal., 32, 41-51 (1998) · Zbl 0891.35031
[3] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.; Ambrosetti, A.; Rabinowitz, P., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[4] D. Applebaum, Lévy processes: From probability to finance quantum groups, Notices Amer. Math. Soc. 51 (2004), 1336-1347.; Applebaum, D., Lévy processes: From probability to finance quantum groups, Notices Amer. Math. Soc., 51, 1336-1347 (2004) · Zbl 1053.60046
[5] G. Autuori, A. Fiscella and P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal. 125 (2015), 699-714.; Autuori, G.; Fiscella, A.; Pucci, P., Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125, 699-714 (2015) · Zbl 1323.35015
[6] G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in \(\mathbb{R}^N\), J. Differential Equations 255 (2013), 2340-2362.; Autuori, G.; Pucci, P., Elliptic problems involving the fractional Laplacian in \(\mathbb{R}^N\), J. Differential Equations, 255, 2340-2362 (2013) · Zbl 1284.35171
[7] A. Azzollini, A note on the elliptic Kirchhoff equation in \(\mathbb{R}^N\) perturbed by a local nonlinearity, Commun. Contemp. Math. 17 (2015), 1-5.; Azzollini, A., A note on the elliptic Kirchhoff equation in \(\mathbb{R}^N\) perturbed by a local nonlinearity, Commun. Contemp. Math., 17, 1-5 (2015) · Zbl 1321.35016
[8] B. Barrios, E. Colorado, A. de Pablo and U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), 6133-6162.; Barrios, B.; Colorado, E.; de Pablo, A.; Sánchez, U., On some critical problems for the fractional Laplacian operator, J. Differential Equations, 252, 6133-6162 (2012) · Zbl 1245.35034
[9] B. Barrios, E. Colorado, R. Servadei and F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), 875-900.; Barrios, B.; Colorado, E.; Servadei, R.; Soria, F., A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32, 875-900 (2015) · Zbl 1350.49009
[10] L. Brasco, S. Mosconi and M. Squassina, Optimal decay of extremal functions for the fractional Sobolev inequality, Calc. Var. Partial Differential Equations 55 (2016), 1-32.; Brasco, L.; Mosconi, S.; Squassina, M., Optimal decay of extremal functions for the fractional Sobolev inequality, Calc. Var. Partial Differential Equations, 55, 1-32 (2016) · Zbl 1350.46024
[11] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.; Brézis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36, 437-477 (1983) · Zbl 0541.35029
[12] L. Caffarelli, Non-local diffusions, drifts and games, Nonlinear Partial Differential Equations (Oslo 2010), Abel Symp. 7, Springer, Berlin (2012), 37-52.; Caffarelli, L., Non-local diffusions, drifts and games, Nonlinear Partial Differential Equations, 37-52 (2012) · Zbl 1266.35060
[13] D. M. Cao, G. B. Li and H. S. Zhou, Multiple solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 1177-1191.; Cao, D. M.; Li, G. B.; Zhou, H. S., Multiple solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent, Proc. Roy. Soc. Edinburgh Sect. A, 124, 1177-1191 (1994) · Zbl 0814.35026
[14] J. Chabrowski, On multiple solutions for the non-homogeneous p-Laplacian with a critical Sobolev exponent, Differential Integral Equations 8 (1995), 705-716.; Chabrowski, J., On multiple solutions for the non-homogeneous p-Laplacian with a critical Sobolev exponent, Differential Integral Equations, 8, 705-716 (1995) · Zbl 0814.35033
[15] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573.; Di Nezza, E.; Palatucci, G.; Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 521-573 (2012) · Zbl 1252.46023
[16] I. Ekeland, On the variational principle, J. Math. Anal. App. 47 (1974), 324-353.; Ekeland, I., On the variational principle, J. Math. Anal. App., 47, 324-353 (1974) · Zbl 0286.49015
[17] G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl. 401 (2013), 706-713.; Figueiredo, G. M., Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl., 401, 706-713 (2013) · Zbl 1307.35110
[18] A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. 94 (2014), 156-170.; Fiscella, A.; Valdinoci, E., A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94, 156-170 (2014) · Zbl 1283.35156
[19] Y. Q. Fu and X. Zhang, Multiple solutions for a class of \(p(x)\)-Laplacian equations in \(\mathbb{R}^N\) involving the critical exponent, Proc. R. Soc. Lond. Ser. A 2118 (2010), 1667-1686.; Fu, Y. Q.; Zhang, X., Multiple solutions for a class of \(p(x)\)-Laplacian equations in \(\mathbb{R}^N\) involving the critical exponent, Proc. R. Soc. Lond. Ser. A, 2118, 1667-1686 (2010) · Zbl 1189.35128
[20] J. V. Goncalves and C. O. Alves, Existence of positive solutions for m-Laplacian equations in \(\mathbb{R}^N\) involving critical exponents, Nonlinear Anal. 32 (1998), 53-70.; Goncalves, J. V.; Alves, C. O., Existence of positive solutions for m-Laplacian equations in \(\mathbb{R}^N\) involving critical exponents, Nonlinear Anal., 32, 53-70 (1998) · Zbl 0892.35062
[21] Y. He, G. B. Li and S. J. Peng, Concentrating bound states for Kirchhoff type problems in \(\mathbb{R}^3\) involving critical Sobolev exponents, Adv. Nonlinear Stud. 14 (2014), 483-510.; He, Y.; Li, G. B.; Peng, S. J., Concentrating bound states for Kirchhoff type problems in \(\mathbb{R}^3\) involving critical Sobolev exponents, Adv. Nonlinear Stud., 14, 483-510 (2014) · Zbl 1305.35033
[22] X. M. He and W. M. Zou, Ground states for nonlinear Kirchhoff equations with critical growth, Ann. Mat. Pura Appl. (4) 193 (2014), 473-500.; He, X. M.; Zou, W. M., Ground states for nonlinear Kirchhoff equations with critical growth, Ann. Mat. Pura Appl. (4), 193, 473-500 (2014) · Zbl 1300.35016
[23] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (2000), 298-305.; Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 298-305 (2000) · Zbl 0948.81595
[24] S. H. Liang and S. Y. Shi, Soliton solutions to Kirchhoff type problems involving the critical growth in \(\mathbb{R}^N\), Nonlinear Anal. 81 (2013), 31-41.; Liang, S. H.; Shi, S. Y., Soliton solutions to Kirchhoff type problems involving the critical growth in \(\mathbb{R}^N\), Nonlinear Anal., 81, 31-41 (2013) · Zbl 1266.35066
[25] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoam. 1 (1985), 145-201; erratum in Part II, Rev. Mat. Iberoam. 1 (1985), 45-121.; Lions, P. L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoam., 1, 145-201 (1985) · Zbl 0704.49005
[26] J. Liu, J. F. Liao and C. L. Tang, Positive solutions for Kirchhoff-type equations with critical exponent in \(\mathbb{R}^N\), J. Math. Anal. Appl. 429 (2015), 1153-1172.; Liu, J.; Liao, J. F.; Tang, C. L., Positive solutions for Kirchhoff-type equations with critical exponent in \(\mathbb{R}^N\), J. Math. Anal. Appl., 429, 1153-1172 (2015) · Zbl 1319.35021
[27] G. Molica Bisci and V. Rădulescu, Ground state solutions of scalar field fractional for Schrödinger equations, Calc. Var. Partial Differential Equations 54 (2015), 2985-3008.; Molica Bisci, G.; Rădulescu, V., Ground state solutions of scalar field fractional for Schrödinger equations, Calc. Var. Partial Differential Equations, 54, 2985-3008 (2015) · Zbl 1330.35495
[28] G. Molica Bisci and V. Rădulescu, Multiplicity results for elliptic fractional equations with subcritical term, NoDEA Nonlinear Differential Equations Appl. 22 (2015), 721-739.; Molica Bisci, G.; Rădulescu, V., Multiplicity results for elliptic fractional equations with subcritical term, NoDEA Nonlinear Differential Equations Appl., 22, 721-739 (2015) · Zbl 1322.49025
[29] G. Molica Bisci and D. Repovš, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl. 420 (2014), 591-601.; Molica Bisci, G.; Repovš, D., Higher nonlocal problems with bounded potential, J. Math. Anal. Appl., 420, 591-601 (2014) · Zbl 1294.35021
[30] A. Ourraoui, On a p-Kirchhoff problem involving a critical nonlinearity, C. R. Math. Acad. Sci. Paris Ser. I 352 (2014), 295-298.; Ourraoui, A., On a p-Kirchhoff problem involving a critical nonlinearity, C. R. Math. Acad. Sci. Paris Ser. I, 352, 295-298 (2014) · Zbl 1298.35096
[31] G. Palatucci and A. Pisante, Improved Sobolev embeddings, profle decomposition, and concentration compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations 50 (2014), 799-829.; Palatucci, G.; Pisante, A., Improved Sobolev embeddings, profle decomposition, and concentration compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50, 799-829 (2014) · Zbl 1296.35064
[32] P. Pucci and S. Saldi, Critical stationary Kirchhoff equations in \(\mathbb{R}^N\) involving nonlocal operators, Rev. Mat. Iberoam. 32 (2016), 1-22.; Pucci, P.; Saldi, S., Critical stationary Kirchhoff equations in \(\mathbb{R}^N\) involving nonlocal operators, Rev. Mat. Iberoam., 32, 1-22 (2016) · Zbl 1405.35045
[33] P. Pucci, M. Q. Xiang and B. L. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in \(\mathbb{R}^N\), Calc. Var. Partial Differential Equations 54 (2015), 2785-2806.; Pucci, P.; Xiang, M. Q.; Zhang, B. L., Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in \(\mathbb{R}^N\), Calc. Var. Partial Differential Equations, 54, 2785-2806 (2015) · Zbl 1329.35338
[34] P. Pucci, M. Q. Xiang and B. L. Zhang, Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal. 5 (2016), 27-55.; Pucci, P.; Xiang, M. Q.; Zhang, B. L., Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal., 5, 27-55 (2016) · Zbl 1334.35395
[35] X. Ros-Oston and J. Serra, Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Comm. Partial Differential Equations 40 (2015), 115-133.; Ros-Oston, X.; Serra, J., Nonexistence results for nonlocal equations with critical and supercritical nonlinearities, Comm. Partial Differential Equations, 40, 115-133 (2015) · Zbl 1315.35098
[36] R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, Rev. Mat. Complut. 28 (2015), 655-676.; Servadei, R.; Valdinoci, E., Fractional Laplacian equations with critical Sobolev exponent, Rev. Mat. Complut., 28, 655-676 (2015) · Zbl 1338.35481
[37] R. Servadei and E. Valdinoci, The Brézis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), 67-102.; Servadei, R.; Valdinoci, E., The Brézis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367, 67-102 (2015) · Zbl 1323.35202
[38] M. Q. Xiang, B. L. Zhang and M. Ferrara, Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl. 424 (2015), 1021-1041.; Xiang, M. Q.; Zhang, B. L.; Ferrara, M., Existence of solutions for Kirchhoff type problem involving the non-local fractional p-Laplacian, J. Math. Anal. Appl., 424, 1021-1041 (2015) · Zbl 1317.35286
[39] M. Q. Xiang, B. L. Zhang and M. Ferrara, Multiplicity results for the nonhomogeneous fractional p-Kirchhoff equations with concave-convex nonlinearities, Proc. Roy. Soc. A 471 (2015), 10.1098/rspa.2015.0034.; Xiang, M. Q.; Zhang, B. L.; Ferrara, M., Multiplicity results for the nonhomogeneous fractional p-Kirchhoff equations with concave-convex nonlinearities, Proc. Roy. Soc. A, 471 (2015) · Zbl 1371.35332 · doi:10.1098/rspa.2015.0034
[40] M. Q. Xiang, B. L. Zhang and V. Rădulescu, Existence of solutions for perturbed fractional p-Laplacian equations, J. Differential Equations 260 (2016), 1392-1413.; Xiang, M. Q.; Zhang, B. L.; Rădulescu, V., Existence of solutions for perturbed fractional p-Laplacian equations, J. Differential Equations, 260, 1392-1413 (2016) · Zbl 1332.35387
[41] X. Zhang, B. L. Zhang and M. Q. Xiang, Ground states for fractional Schrödinger equations involving a critical nonlinearity, Adv. Nonlinear Anal. 5 (2016), 293-314.; Zhang, X.; Zhang, B. L.; Xiang, M. Q., Ground states for fractional Schrödinger equations involving a critical nonlinearity, Adv. Nonlinear Anal., 5, 293-314 (2016) · Zbl 1346.35224
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.