×

Randomization and the Gross-Pitaevskii hierarchy. (English) Zbl 1372.35287

The authors study the Gross-Pitaevskii hierarchy on the spatial domain \(\mathbb T^3\).
For a fixed spatial domain \(\Lambda = \mathbb T^d\) or \(\Lambda =\mathbb R^d\), the Gross-Pitaevskii hierarchy on \(\Lambda\) is defined to be a sequence \((\gamma^{(k)}(t))_k\) of functions \(\gamma^k:\mathbb R\times \mathbb \Lambda^k\times \mathbb \Lambda^k\to\mathbb C\), which solve the following infinite system of linear PDEs: \[ \begin{cases} i\partial_t\gamma^{(k)}+(\Delta_{\vec {x}_k}-\Delta_{\vec {x}'_k})\gamma^{(k)}=\sum\limits_{j=1}^{k}B_{j,k+1}(\gamma^{(k+1)}) \\ \gamma^{(k)}\mid_{t=0}=\gamma_{0}^{(k)}. \end{cases} \] Here, \((\gamma_{0}^{(k)})_k\) is a fixed sequence of density matrices \(\gamma_{0}^{(k)}\), and \((\gamma^{(k)})_k=(\gamma^{(k)}(t))_k\) is a sequence of time-dependent density matrices of order \(k\). \(\Delta_{\vec {x}_k}:=\sum\limits_{j=1}^k\Delta_{x_j}\) is the Laplacian operator in the first set of \(k\) spatial variables and \(\Delta_{\vec {x}'_k}:=\sum\limits_{j=1}^k\Delta_{x_j'}\) is the Laplacian operator in the second set of \(k\) spatial variables. The map \(B_{j,k+1}\) is called the collision operator.
The Gross-Pitaevskii hierarchy is related to the nonlinear Schrödinger equation.
Earlier, the conditional uniqueness was obtained as a spacetime estimate for a fixed regularity exponent \(\alpha\) and for a fixed time \(T\in (0,+\infty]\). It was shown that the estimate holds on \(\mathbb T^3\) for \(\alpha>1\).
By using the randomization procedure (multiplying the Fourier coefficients by a sequence of independent identically distributed standard Bernoulli random variables), the authors prove the main randomized spacetime estimate in the strong form:
Theorem 1. Let \(\alpha>\dfrac{3}{4}\) be given. There exists a constant \(C_0\) depending only on \(\alpha\) such that for all \(k\in\mathbb N\) and \(1\leq j\leq k\), the following bound holds. \(\|S^{(k,\alpha)}[B_{j,k+1}]^{\omega}\gamma_0^{(k+1)}\|_{L^2(\Omega\times\mathbb T^{3k}\times\mathbb T^{3k})}\leq C_0\|S^{(k+1,\alpha)}\gamma_0^{(k+1)}\|_{L^2(\mathbb T^{(3k+1)}\times\mathbb T^{(3k+1)})}\)
The operator \([B_{j,k+1}]^{\omega}\) is a randomized collision operator, for a fixed \(\omega\) belonging to the probability space \(\Omega\). It is obtained from the collision operator \(B_{j,k+1}\) by appropriately randomizing the Fourier coefficients by means of standard Bernoulli random variables.
The properties of the randomized Gross-Pitaevskii hierarchy are investigated. It is shown that its factorized solutions are obtained as tensor products of solution to a nonlinear Schrödinger equation with a random nonlinearity. The convergence to zero of a sequence of Duhamel terms in a low-regularity space containing a random component is analyzed.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35R60 PDEs with randomness, stochastic partial differential equations
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35B65 Smoothness and regularity of solutions to PDEs
35B45 A priori estimates in context of PDEs

References:

[1] Adami R., Bardos C., Golse F., Teta A.: Towards a rigorous derivation of the cubic nonlinear Schrödinger equation in dimension one. Asymptot. Anal. 40(2), 93-108 (2004) · Zbl 1069.35082
[2] Adami, R., Golse, F., Teta, A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127(6), 1193-1220 (2007) · Zbl 1118.81021
[3] Adams, S., Collevecchio, A., König, W.: A variational formula for the free energy of an interacting many-particle system. Ann. Prob. 39(2), 683-728 (2011) · Zbl 1225.60147
[4] Aizenman, M., Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: Bose-Einstein quantum phase transition in an optical lattice model. Phys. Rev. A70, 023612 (2004) · Zbl 1170.82325
[5] Aizenman, M., Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: Bose-Einstein condensation as a quantum phase transition in an optical lattice. Math. Phys. Q. Mech. Lect. Notes Phys., 690, 199-215 (2006) · Zbl 1170.82325
[6] Anapolitanos I.: Rate of convergence towards the Hartree-von Neumann limit in the mean-field regime. Lett. Math. Phys. 98(1), 1-31 (2011) · Zbl 1244.35112 · doi:10.1007/s11005-011-0477-x
[7] Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observations of Bose-Einstein condensation in a dilute atomic vapor. Science269, 198-201 (1995)
[8] Ayache, A., Tzvetkov, N.: Lp Properties for Gaussian random series. Trans. Am. Math. Soc. 360(8), 4425-4439 (2008) · Zbl 1145.60019
[9] Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Microscopic theory of superconductivity. Phys. Rev. 102, 162-164 (1957) · Zbl 0090.45401
[10] Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108(5), 1175-1204 (1957) · Zbl 0090.45401
[11] Bardos, C., Golse, F., Mauser, N.: Weak coupling limit of the N-particle Schrödinger equation. Methods Appl. Anal. 7, 275-293 (2000) · Zbl 1003.81027
[12] Beckner, W.: Multilinear embedding estimates for the fractional Laplacian. Math. Res. Lett. 19, 175-189 (2012) · Zbl 1291.35426
[13] Beckner, W.: Convolution estimates and the Gross-Pitaevskii hierarchy (preprint) (2011). arXiv:1111.3857
[14] Ben Arous, G., Kirkpatrick, K., Schlein, B.: A central limit theorem in many-body quantum dynamics. Commun. Math. Phys. 321(2), 371-417 (2013) · Zbl 1280.81157
[15] Benedikter, N., Porta, M., Schlein, B.: Mean-field evolution of fermionic systems. Commun. Math. Phys.331 (3), 1087-1131 (2014) · Zbl 1304.82061
[16] Benedikter, N., Porta, M., Schlein, B.: Mean-field dynamics of fermions with relativistic dispersion Mean-field dynamics of fermions with relativistic dispersion. J. Math. Phys.55(2), Art. ID 021901, 10 pp (2014) · Zbl 1286.81183
[17] Benedikter, N., de Oliveira, G., Schlein, B.: Quantitative derivation of the Gross-Pitaevskii equation (preprint) (2012). arXiv:1208.0373 · Zbl 1320.35318
[18] Benyi, A., Oh, T., Pocovnicu, O.: Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS (preprint) (2014). arXiv:1405.7326 (to appear in excursions in harmonic analysis) · Zbl 1375.42040
[19] Benyi, A., Oh, T., Pocovnicu, O.: On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on \[{\mathbb{R}^d}\] Rd , \[{d \geq 3}\] d≥3 (preprint) (2014). arXiv:1405.7327 · Zbl 1339.35281
[20] Bose, S.N.: Plancks Gesetz und Lichtquantenhypothese. Zeitschrift für Physik26, 178 (1924) · JFM 51.0732.04
[21] Bourgain, J.: Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I: Schrödinger equations. Geom. Funct. Anal. 3, 107-156 (1993) · Zbl 0787.35097
[22] Bourgain, J.: Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166(1), 1-26 (1994) · Zbl 0822.35126
[23] Bourgain, J.: On the Cauchy problem and invariant measure problem for the periodic Zakharov system. Duke Math. J. 76, 175-202 (1994) · Zbl 0821.35120
[24] Bourgain, J.: Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176(2), 421-445 (1996) · Zbl 0852.35131
[25] Bourgain, J.: Invariant measures for the Gross-Pitaevskii equation. J. Math. Pures et Appl. T76(F. 8), 649-702 (1997) · Zbl 0906.35095
[26] Bourgain, J.: Refinements of Strichartz’s Inequality and applications to 2D-NLS with critical nonlinearity. Int. Math. Res. Not. 5, 253-283 (1998) · Zbl 0917.35126
[27] Bourgain, J.: Global well-posedness of the defocusing critical nonlinear Schrödinger equation in the radial case. J. Am. Math. Soc. 12(1), 145-171 (1999) · Zbl 0958.35126
[28] Bourgain, J., Bulut, A.: Gibbs measure evolution in radial nonlinear wave and Schrödinger equations on the ball. C. R. Math. Acad. Sci. Paris350(11-12), 571-575 (2012) · Zbl 1251.35141
[29] Bourgain, J., Bulut, A.: Almost sure global well posedness for the radial nonlinear Schrödinger equation on the unit ball II: the 3D case. J. Eur. Math. Soc. (JEMS)16(6), 1289-1325 (2014) · Zbl 1301.35145
[30] Bourgain, J., Bulut, A.: Invariant Gibbs measure evolution for the radial nonlinear wave equation on the 3D ball. J. Funct. Anal. 266(4), 2319-2340 (2014) · Zbl 1295.35323
[31] Burq, N., Thomann, L., Tzvetkov, N.: Global infinite energy solutions for the cubic wave equation (preprint) (2012). arXiv:1210.2086 · Zbl 1320.35217
[32] Burq, N., Tzvetkov, N.: Invariant measure for a three dimensional nonlinear wave equation. Int. Math. Res. Not. IMRN2007(22), Art. ID rnm108, 26 pp (2007) · Zbl 1134.35076
[33] Burq, N., Tzvetkov, N.: Random data Cauchy theory for supercritical wave equations. I. Local theory. Invent. Math. 173(3), 449-475 (2008) · Zbl 1156.35062
[34] Burq, N., Tzvetkov, N.: Random data Cauchy theory for supercritical wave equations. II. Local theory. Invent. Math. 173(3), 477-496 (2008) · Zbl 1187.35233
[35] Burq, N., Tzvetkov, N.: Probabilistic well-posedness for the cubic wave equation. J. Eur. Math. Soc. 16(1), 1-30 (2014) · Zbl 1295.35387
[36] Cacciafesta, F., de Suzzoni, A.-S.: Invariant measure for the Schrödinger equation on the real line (preprint) (2014). arXiv:1405.5107 · Zbl 1317.35227
[37] Chatterjee, S., Diaconis, P.: Fluctuations of the Bose-Einstein condensate. J. Phys. A47(8), 085201 (2014) (23 pp) · Zbl 1287.82005
[38] Chen, L., Lee, J.O., Schlein, B.: Rate of convergence towards Hartree dynamics. J. Stat. Phys. 144(4), 872-903 (2011) · Zbl 1227.82046
[39] Chen, T., Hainzl, C., Pavlović, N., Seiringer, R.: Unconditional uniqueness for the cubic Gross-Pitaevskii hierarchy via quantum de Finetti (preprint) (2013). arXiv:1307.3168 · Zbl 1326.35332
[40] Chen, T., Hainzl, C., Pavlović, N., Seiringer, R.: On the well-posedness and scattering for the Gross-Pitaevskii hierarchy via quantum de Finetti. Lett. Math. Phys. 104(7), 871-891 (2014) · Zbl 1297.35214
[41] Chen, T., Pavlović, N.: On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hiearchies. Discr. Contin. Dyn. Syst. 27(2), 715-739 (2010) · Zbl 1190.35207
[42] Chen, T., Pavlović, N.: The quintic NLS as the mean field limit of a Boson gas with three-body interactions. J. Funct. Anal. 260(4), 959-997 (2011) · Zbl 1213.35368
[43] Chen, T., Pavlović, N.: Higher order energy conservation and global well-posedness for Gross-Pitaevskii hierarchies. Commun. Partial Differ. Equ.39(9), 1597-1634 (2014) · Zbl 1301.35146
[44] Chen, T., Pavlović, N.: A new proof of existence of solutions for focusing and defocusing Gross-Pitaevskii hierarchies. Proc. Am. Math. Soc. 141(1), 279-293 (2013) · Zbl 1260.35197
[45] Chen, T., Pavlović, N.: Derivation of the cubic NLS and Gross-Pitaevskii hierarchy from many-body dynamics in d = 2, 3 based on spacetime norms. Ann. Henri Poincaré15(3), 543-588 (2014) · Zbl 1338.35406
[46] Chen, T., Pavlović, N., Tzirakis, N.: Energy conservation and blowup of solutions for focusing and defocusing Gross-Pitaevskii hierarchies. Ann. H. Poincaré (C), Anal. Non-Lin. 27(5), 1271-1290 (2010) · Zbl 1200.35253
[47] Chen, T., Pavlović, N., Tzirakis, N.: Multilinear Morawetz Identities for the Gross-Pitaevskii Hierarchy. Recent Advances in Harmonic Analysis and Partial Differential Equations, 39-62, Contemporary Mathematics, vol. 581. American Mathematical Society, Providence (2012) · Zbl 1317.35229
[48] Chen, T., Taliaferro, K.: Derivation in strong topology and global well-posedness of solutions to the Gross-Pitaevskii hierarchy. Commun. Partial Differ. Equ. 39(9),1658-1693 (2014) · Zbl 1301.35147
[49] Chen, X.: The Grillakis-Machedon-Margetis second order corrections to mean field evolution for weakly interacting Bosons in the case of 3-body interactions (preprint) (2009). arXiv:0911.4153
[50] Chen, X.: Second order corrections to mean field evolution for weakly interacting bosons in the case of three-body interactions. Arch. Ration. Mech. Anal. 203, 455-497 (2012) · Zbl 1256.35099
[51] Chen, X.: Collapsing estimates and the rigorous derivation of the 2d cubic nonlinear Schrödinger equation with anisotropic switchable quadratic traps. J. Math. Pures Appl. (9)98(4), 450-478 (2012) · Zbl 1251.35144
[52] Chen, X.: On the rigorous derivation of the 3D cubic nonlinear Schrödinger Equation with a quadratic trap. Arch. Ration. Mech. Anal. 210(2), 365-408 (2013) · Zbl 1294.35132
[53] Chen, X., Holmer, J.: On the rigorous derivation of the 2D cubic nonlinear Schrödinger equation from 3D quantum many-body dynamics. Arch. Ration. Mech. Anal. 210(3), 909-954 (2013) · Zbl 1288.35429
[54] Chen, X., Holmer, J.: On the Klainerman-Machedon conjecture of the quantum BBGKY hierarchy with self-interaction (preprint) (2013). arXiv:1303.5385 · Zbl 1342.35322
[55] Chen, X., Holmer, J.: Focusing quantum many-body dynamics: the rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation (preprint) (2013). arXiv:1308.3895 · Zbl 1338.35407
[56] Chen, X., Holmer, J.: Focusing quantum many-body dynamics II: the rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation from 3D (preprint) (2014). arXiv:1407.8457 · Zbl 1368.35245
[57] Chen, X., Holmer, J.: Correlation structures, many-body scattering processes and the derivation of the Gross-Pitaevskii hierarchy (preprint) (2014). arXiv:1409.1425 · Zbl 1404.35407
[58] Chen, X., Smith, P.: On the unconditional uniqueness of solutions to the infinite radial Chern-Simons-Schrödinger hierarchy. Anal. PDE7(7), 1683-1712 (2014) · Zbl 1307.35273
[59] Chen, Z., Liu, C.: On the Cauchy problem for Gross-Pitaevskii hierarchies. J. Math. Phys. 52(3), 032103 (2011) · Zbl 1315.35199
[60] Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness for Schrödinger equations with derivative. SIAM J. Math. Anal. 33(3), 649-669 (2001) · Zbl 1002.35113
[61] Colliander, J., Oh, T.: Almost sure well-posedness of the cubic nonlinear Schrödinger equation below \[{L^2(\mathbb{T})}\] L2(T) . Duke Math. J. 161(3), 367-414 (2012) · Zbl 1260.35199
[62] Cooper, L.N.: Bound electron pairs in a degenerate fermi gas. Phys. Rev. 104, 1189-1190 (1956) · Zbl 0074.23705
[63] Cramer, M., Eisert, J.: A quantum central limit theorem for non-equilibrium systems: exact relaxation of correlated states. New. J. Phys. 12, 055020 (2009) · Zbl 1375.82060
[64] Cushen, C.D., Hudson, R.L.: A quantum-mechanical central limit theorem. J. Appl. Prob. 8, 454 (1971) · Zbl 0224.60049
[65] Davis, K.B., Mewes, M.O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Let. 75(22), 3969-3973 (1995)
[66] Deng, C., Cui, S.: Random-data Cauchy problem for the Navier-Stokes equations on \[{{\mathbb{T}}^3}\] T3 . J. Differ. Equ. 251(4-5), 902-917 (2011) · Zbl 1228.35168
[67] Deng, C., Cui, S.: Random-data Cauchy problem for the periodic Navier-Stokes equations with initial data in negative-order Sobolev spaces. J. Differ. Equ. 251(4-5), 902-917 (2011) · Zbl 1228.35168
[68] Deng, Y.: Two dimensional NLS equation with random initial data. Anal. PDE5(5), 913-960 (2012) · Zbl 1264.35212
[69] Deng, Y.: Invariance of the Gibbs measure for the Benjamin-Ono equation (preprint) (2012). arXiv:1210.1542 · Zbl 1379.37135
[70] Deng, Y., Tzvetkov, N., Visciglia, N.: Invariant measures and long time behaviour for the Benjamin-Ono equation III (preprint) (2014). arXiv:1405.4954 · Zbl 1379.37136
[71] Doob, J.L.: Stochastic processes with an integral-valued parameter. Trans. Am. Math. Soc. 44(1), 87-150 (1938) · Zbl 0019.12701
[72] Einstein, A.: Quantentheorie des einatomigen idealen Gases. Sitzungsberichte der Preussischen Akademie der Wissenschaften1, 3 (1925) · JFM 51.0755.04
[73] Elgart, A., Erdos, L., Schlein, B., Yau, H.-T.: Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons. Arch. Ration. Mech. Anal. 179, 265-283 (2006) · Zbl 1086.81035
[74] Elgart, A., Schlein, B.: Mean field dynamics of boson stars. Commun. Pure Appl. Math. 60(4), 500-545 (2007) · Zbl 1113.81032
[75] Erdos, L., Schlein, B.: Quantum dynamics with mean field interactions: a new approach. J. Stat. Phys. 134(5), 859-870 (2009) · Zbl 1173.82016
[76] Erdos, L., Schlein, B., Yau, H.-T.: Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659-1741 (2006) · Zbl 1122.82018
[77] Erdos, L., Schlein, B., Yau, H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167(3), 515-614 (2007) · Zbl 1123.35066
[78] Erdos, L., Schlein, B., Yau, H.-T.: Rigorous derivation of the Gross-Pitaevskii equation. Phys. Rev. Lett. 98(4), 040404 (2007) · Zbl 1207.82031
[79] Erdos, L., Schlein, B., Yau, H.-T.: Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22(4), 1099-1156 (2009) · Zbl 1207.82031
[80] Erdos, L., Schlein, B., Yau, H.-T.: Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate. Ann. Math. (2)172(1), 291-370 (2010) · Zbl 1204.82028
[81] Erdos, L., Yau, H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169-1205 (2001) · Zbl 1014.81063
[82] Federbush, P.: A partially alternate derivation of a result of Nelson. J. Math. Phys. 10, 50-52 (1969) · Zbl 0165.58301
[83] Fichtner, K.-H.: On the position distribution of the ideal Bose gas. Math. Nachr. 151, 59-67 · Zbl 0728.60052
[84] Fröhlich, J., Graffi, S., Schwarz, S.: Mean-field and classical limit of many body Schrödinger dynamics for bosons. Commun. Math. Phys. 271(3), 681-697 (2007) · Zbl 1172.82011
[85] Fröhlich, J., Knowles, A., Pizzo, A.: Atomism and quantization. J. Phys. A40(12), 3033-3045 (2007) · Zbl 1115.81071
[86] Fröhlich, J., Knowles, A., Schwarz, S.: On the mean-field limit of bosons with Coulomb two-body interaction. Commun. Math. Phys. 288(3), 1023-1059 (2009) · Zbl 1177.82016
[87] Fröhlich, J., Lenzmann, E.: Mean-Field Limit of Quantum Bose Gases and Nonlinear Hartree Equation. Sem. é.D.P. 2003-2004, Exp. No. XIX, p. 26. Sémin. Équ. Dériv. Partielles, École Polytech., Palaiseau (2004) · Zbl 1292.81040
[88] Ginibre, J., Velo, G.: The classical field limit of scattering theory for nonrelativistic many-boson systems I. Commun. Math. Phys. 66(1), 37-76 (1979) · Zbl 0443.35067
[89] Ginibre, J., Velo, G.: The classical field limit of scattering theory for nonrelativistic many-boson systems II. Commun. Math. Phys. 68(1), 45-68 (1979) · Zbl 0443.35068
[90] Glimm, J.: Boson fields with non-linear self-interaction in two dimensions. Commun. Math. Phys. 8, 12-25 (1968) · Zbl 0173.29903
[91] Goderis, D., Verbeure, A., Vets, P.: About the mathematical theory of quantum fluctuations. In: Mathematical Methods in Statistical Mechanics, Leuven Notes in Mathematical and Theoretical Physics, vol. 1. Leuven University Press, Leuven (1989) · Zbl 0698.60085
[92] Gressman, P., Sohinger, V., Staffilani, G.: On the uniqueness of solutions to the 3D periodic Gross-Pitaevskii hierarchy. J. Funct. Anal. 266(7), 4705-4764 (2014) · Zbl 1297.35215
[93] Grillakis, M., Machedon, M.: Pair excitations and the mean field approximation of interacting bosons, I. Comunm. Math. Phys. 324(2), 601-636 (2013) · Zbl 1277.82034
[94] Grillakis, M., Machedon, M., Margetis, D.: Second order corrections to mean field evolution of weakly interacting bosons, I. Commun. Math. Phys. 294, 273-301 (2010) · Zbl 1208.82030
[95] Grillakis, M., Machedon, M., Margetis, D.: Second order corrections to mean field evolution of weakly interacting bosons, II. Adv. Math. 228(3), 1788-1815 (2011) · Zbl 1226.82033
[96] Gross, E.: Structure of a quantized vortex in boson systems. Nuovo Cimento20 (1961), 454-466. · Zbl 0100.42403
[97] Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061-1083 (1975) · Zbl 0318.46049
[98] Gross, L.: Hypercontractivity and logarithmic Sobolev inequalities for the Clifford Dirichlet form. Duke Math. J. 42(3), 383-396 (1975) · Zbl 0359.46038
[99] Hayashi, M.: Quantum estimation and the quantum central limit theorem. Sci. Technol. 227, 95 (2006)
[100] Hepp, K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265-277 (1974)
[101] Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta46, 573-603 (1973)
[102] Herr, S., Sohinger, V.: The Gross-Pitaevskii hierarchy on general rectangular tori (preprint) (2014). arXiv:1410.5338 · Zbl 1334.35315
[103] Hong, Y., Taliaferro, K., Xie, Z.: Unconditional uniqueness of the cubic Gross-Pitaevskii hierarchy with low regularity (preprint) (2014). arXiv:1402.5347 · Zbl 1343.35198
[104] Hong, Y., Taliaferro, K., Xiw, Z.: Uniqueness of solutions to the 3D quintic Gross-Pitaevskii hierarchy (preprint) (2014). arXiv:1410.6961
[105] Jaksić, V., Pautrat, Y., Pillet, C.-A.: A quantum central limit theorem for sums of iid random variables. J. Math. Phys. 51, 015208 (2010) · Zbl 1417.81144
[106] Kakutani, S.: Notes on infinite product measure spaces. Proc. Imp. Acad. 19(3), 148-151 (1943) · Zbl 0061.09701
[107] Kirkpatrick, K., Schlein, B., Staffilani, G.: Derivation of the cubic nonlinear Schrödinger equation from quantum dynamics of many-body systems: the periodic case. Am. J. Math. 133(1), 91-130 (2011) · Zbl 1208.81080
[108] Klainerman, S., Machedon, M.: On the uniqueness of solutions to the Gross-Pitaevskii hierarchy. Commun. Math. Phys. 279(1), 169-185 (2008) · Zbl 1147.37034
[109] Knowles, A.: Limiting dynamics in large quantum systems. Ph.D. thesis, ETH (2009)
[110] Knowles, A., Pickl, P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298(1), 101-139 (2010) · Zbl 1213.81180
[111] Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin, 1933 · Zbl 0006.35802
[112] Ku, M.J.H., Sommer, A.T., Cheuk, L.W., Zwierlein, M.W.: Revealing the superfluid lambda transition in the universal thermodynamics of a unitary fermi gas. Science335, 563-567 (2012)
[113] Kuperberg, G.: A tracial quantum central limit theorem. Trans. Am. Math. Soc. 357(2), 459-471 (2005) · Zbl 1062.46054
[114] Lebowitz, J., Rose, H., Speer, E.: Statistical mechanics of the nonlinear Schrödinger equation. J. Stat. Phys. 50(3-4), 657-687 (1988) · Zbl 0925.35142
[115] Lee, J.O.: Rate of convergence towards semi-relativistic Hartree dynamics. Ann. H. Poincaré (C)14(2), 313-346 (2013) · Zbl 1267.81305
[116] Lewin, M., Nam, P.T., Rougerie, N.: Derivation of nonlinear Gibbs measures from many-body quantum dynamics (preprint) (2014). arXiv:1410.0335 · Zbl 1322.81082
[117] Lieb, E.H., Seiringer, R.: Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409-1-4 (2002)
[118] Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The mathematics of the Bose gas and its condensation. Oberwolfach Seminars, vol. 34. Birkhäuser Verlag, Basel, 2005 · Zbl 1104.82012
[119] Lieb, E.H., Seiringer, R., Yngvason, J.P.: Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A61, 043602 (2000) · Zbl 1043.82515
[120] Lieb, E., Seiringer, R., Yngvason, J.: A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas. Dedicated to Joel L. Lebowitz. Comm. Math. Phys. 224(1), 17-31 (2001) · Zbl 0996.82010
[121] Lührmann, J.: Mean-field quantum dynamics with magnetic fields. J. Math. Phys. 53(2), 022105 (2012) (19 pp) · Zbl 1274.81085
[122] Lührmann, J., Mendelson, D.: Random data Cauchy theory for nonlinear wave equations of power-type on \[{{\mathbb{R}}^3}\] R3 . Commun. Partial Differ. Equ. 39(12), 2262-2283 (2014) · Zbl 1304.35788
[123] Marcinkiewicz, J., Zygmund, A.: Sur les foncions indépendantes. Fund. Math. 28, 60-90 (1937); Reprinted in Józef Marcinkiewicz, Collected papers, edited by Antoni Zygmund, Panstwowe Wydawnictwo Naukowe, Warsaw, pp. 233-259 (1964) · Zbl 0016.40901
[124] Michelangeli, A., Schlein, B.: Dynamical collapse of boson stars. Commun. Math. Phys. 311(3), 645-687 (2012) · Zbl 1242.85007
[125] Nahmod, A., Oh, T., Rey-Bellet, L., Staffilani, G.: Invariant Wiener measures and almost sure global well-posedness for the periodic derivative NLS. J. Eur. Math. Soc. (JEMS)14(4), 1275-1330 (2012) · Zbl 1251.35151
[126] Nahmod, A., Rey-Bellet, L., Sheffield, S., Staffilani, G.: Absolute continuity of Gaussian measures under certain gauge transformations. Math. Res. Lett. 18(5), 875-887 (2011) · Zbl 1250.60018
[127] Nahmod, A., Pavlović, N., Staffilani, G.: Almost sure existence of global weak solutions for super-critical Navier-Stokes equations. SIAM J. Math. Anal. 45(6), 3431-3452 (2013) · Zbl 1355.76018
[128] Nahmod, A., Staffilani, G.: Randomization in nonlinear pde and the supercritical periodic quintic NLS in 3D (preprint) (2013). arXiv:1308.1169
[129] Nelson, E.: The free Markoff field. J. Funct. Anal. 12, 211-227 (1973) · Zbl 0273.60079
[130] Oh, T.: Gibbs measures and almost sure global well-posedness for coupled KdV systems. Differ. Integr. Equ. 22(7-8), 637-668 (2009) · Zbl 1240.35477
[131] Oh, T.: Invariance of the white noise for KdV. Commun. Math. Phys. 292(1), 217-236 (2009); Erratum: “Invariance of the white noise for KdV” (in preparation) · Zbl 1185.35237
[132] Oh, T.: Invariance of the Gibbs measure for the Schrödinger-Benjamin-Ono System. SIAM J. Math. Anal. 41(1), 2207-2225 (2009) · Zbl 1205.35268
[133] Oh, T., Sulem, C.: On the one-dimensional cubic nonlinear Schrodinger equation below L2. Kyoto J. Math. 52(1), 99-115 (2012) · Zbl 1258.35184
[134] Paley, R.E.A.C., Zygmund, A.: On some series of functions 1. Proc. Camb. Philos. Soc. 26, 337-357 (1930) · JFM 56.0254.01
[135] Paley, R.E.A.C., Zygmund, A.: On some series of functions 2. Proc. Camb. Philos. Soc. 26, 458-474 (1930) · JFM 56.0254.01
[136] Paley, R.E.A.C., Zygmund, A.: On some series of functions 3. Proc. Camb. Philos. Soc. 28, 190-205 (1932) · Zbl 0006.19802
[137] Pickl, P.: Derivation of the time dependent Gross-Pitaevskii equation with external fields. J. Stat. Phys. 140(1), 76-89 (2010) · Zbl 1202.82059
[138] Pickl, P.: A simple derivation of mean field limits for quantum systems. Lett. Math. Phys. 97(2), 151-164 (2011) · Zbl 1242.81150
[139] Pitaevskii, L.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP13, 451-454 (1961)
[140] Prokof’ev, N., Svistunov, B.: Bold diagrammatic Monte Carlo technique: When the sign problem is welcome. Phys. Rev. Lett. 99, 250201 (2007)
[141] Prokof’ev, N., Svistunov, B.: Bold diagrammatic Monte Carlo: A generic sign-problem tolerant technique for polaron models and possibly interacting many-body problems. Phys. Rev. B77, 125101 (2008)
[142] Rademacher, H.: Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen. Math Ann. 87, 112-138 (1922) · JFM 48.0485.05
[143] Rafler, M.: Gaussian loop- and Pólya processes: a point process approach. Ph.D. thesis, University of Potsdam (2009)
[144] Richards, G.: Invariance of the Gibbs measure for the periodic quartic gKdV (preprint) (2012). arXiv:1209.4337 · Zbl 1342.35310
[145] Rodnianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291(1), 31-61 (2009) · Zbl 1186.82051
[146] Schlein, B.: Derivation of effective evolution equations from microscopic quantum dynamics, chapter. In: D. Ellwood, I. Rodnianski, G. Staffilani, J. Wunsch (eds.) Clay Mathematics Proceedings of Evolution Equations, vol. 17, p. 572, 2013 · Zbl 1298.35203
[147] Sohinger, V.: Local existence of solutions to Randomized Gross-Pitaevskii hierarchies. Trans. Am. Math. Soc (preprint) (2014). arXiv:1401.0326 (to appear) · Zbl 1341.35151
[148] Sohinger, V.: A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation from the dynamics of many-body quantum systems. Annales Institut Henri Poincaré C, Analyse Non-Linéaire (preprint) (2014). arXiv:1405.3003 (to appear) · Zbl 1328.35220
[149] Spohn, H.: Kinetic equations from Hamiltonian Dynamics. Rev. Mod. Phys. 52(3), 569-615 (1980)
[150] de Suzzoni, A.-S.: Invariant measure for the cubic wave equation on the unit ball of \[{{\mathbb{R}}^3}\] R3. Dyn. Partial Differ. Equ. 8(2), 127-147 (2011) · Zbl 1237.35118
[151] de Suzzoni, A.-S.: On the use of normal forms in the propagation of random waves (preprint) (2013). arXiv:1307.0619 · Zbl 1308.76044
[152] de Suzzoni, A.-S.: Invariant measure for the Klein-Gordon equation in a non periodic setting (preprint) (2014). arXiv:1403.2274
[153] de Suzzoni, A.-S., Tzvetkov, N.: On the propagation of weakly nonlinear random dispersive waves. Arch. Ration. Mech. Anal. 212(3), 849-874 (2014) · Zbl 1293.35287
[154] Thomann, L.: Random data Cauchy problem for supercritical Schrödinger equations. Ann. Inst. H. Poincaré26(6), 2385-2402 (2009) · Zbl 1180.35491
[155] Thomann, L., Tzvetkov, N.: Gibbs measure for the periodic derivative nonlinear Schrödinger equation. Nonlinearity23(11), 2771-2791 (2010) · Zbl 1204.35154
[156] Tzvetkov, N.: Invariant measures for the nonlinear Schrödinger equation on the disc. Dyn. Partial Differ. Equ. 3(2), 111-160 (2006) · Zbl 1142.35090
[157] Tzvetkov, N.: Invariant measures for the defocusing nonlinear Schrödinger equation. Ann. Inst. Fourier (Grenoble)58(7), 2543-2604 (2008) · Zbl 1171.35116
[158] Tzvetkov, N.: Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation. Probab. Theory Rel. Fields146, 481-514 (2010) · Zbl 1188.35183
[159] Van Houcke, K., Kozik, E., Prokof’ev, N., Svistunov, B.: In: Landau, D.P., Lewis, S.P., Schuttler H.B. (eds.) Computer Simulation Studies in Condensed Matter Physics XXI. Springer, 2008
[160] Van Houcke, K., Werner, F., Kozik, E., Prokof’ev, N., Svistunov, B., Ku, M.J.H., Summer, A.T., Cheuk, L.W., Schirotzek, A., Zwierlein, M.W.: Feynman diagrams versus Fermi-gas Feynman emulator. Nat. Phys., 8, May (2012)
[161] Wolff, T.H.: Lectures on harmonic analysis. University Lecture Series, vol. 29. American Mathematical Society, Providence, RI (2003) · Zbl 1041.42001
[162] Xie, Z.: Derivation of a nonlinear Schrödinger equation with a general power-type nonlinearity (preprint) (2013). arXiv:1305.7240
[163] Xu, S.: Invariant Gibbs measure for 3D NLW in infinite volume (preprint) (2014). arXiv:1405.3856
[164] Zhang, T., Fang, D.: Random data Cauchy theory for the incompressible three dimensional Navier-Stokes equations. Proc. AMS139(8), 2827-2837 (2011) · Zbl 1222.35146
[165] Zhidkov, P.E.: An invariant measure for the nonlinear Schrödinger equation. (Russian) Dokl. Akad. Nauk SSSR317(3), 543-546 (1991); translation in Soviet Math. Dokl.43(2), 431-434 · Zbl 0806.35168
[166] Zhidkov, P.E.: Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory. Lecture Notes in Mathematics, vol. 1756. Springer, Berlin, 2001 · Zbl 0987.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.