×

Magneto-optical conductivity of anisotropic two-dimensional Dirac-Weyl materials. (English) Zbl 1370.82031

Summary: In the presence of an external magnetic field, the optical response of two-dimensional materials, whose charge carriers behave as massless Dirac fermions with arbitrary anisotropic Fermi velocity, is investigated. Using Kubo formalism, we obtain the magneto-optical conductivity tensor for these materials, which allows to address the magneto-optical response of anisotropic Dirac fermions from the well known magneto-optical conductivity of isotropic Dirac fermions. As an application, we analyse the combined effects of strain-induced anisotropy and magnetic field on the transmittance, as well as on the Faraday rotation, of linearly polarized light after passing strained graphene. The reported analytical expressions can be a useful tool to predict the absorption and the Faraday angle of strained graphene under magnetic field. Finally, our study is extended to anisotropic two-dimensional materials with Dirac fermions of arbitrary pseudospin.

MSC:

82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)

References:

[1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Nature, 438, 197 (2005)
[2] Yuanbo, Z.; Yan-Wen, T.; Stormer, H. L.; Philip, K., Nature, 438, 201 (2005)
[3] Katayama, S.; Kobayashi, A.; Suzumura, Y., Eur. Phys. J. B, 67, 139 (2009)
[4] Kajita, K.; Nishio, Y.; Tajima, N.; Suzumura, Y.; Kobayashi, A., J. Phys. Soc. Japan, 83, 072002 (2014)
[5] Hasan, M. Z.; Kane, C. L., Rev. Modern Phys., 82, 3045 (2010)
[6] Qi, X.-L.; Zhang, S.-C., Rev. Modern Phys., 83, 1057 (2011)
[7] Wehling, T. O.; Black-Schaffer, A. M.; Balatsky, A. V., Adv. Phys., 63, 1-76 (2014)
[8] Sadowski, M. L.; Martinez, G.; Potemski, M.; Berger, C.; d. Heer, W. A., Phys. Rev. Lett., 97, 266405 (2006)
[9] Jiang, Z.; Henriksen, E. A.; Tung, L. C.; Wang, Y.-J.; Schwartz, M. E.; Han, M. Y.; Kim, P.; Stormer, H. L., Phys. Rev. Lett., 98, 197403 (2007)
[10] Morimoto, T.; Hatsugai, Y.; Aoki, H., Phys. Rev. Lett., 103, 116803 (2009)
[11] Shimano, R.; Yumoto, G.; Yoo, J. Y.; Matsunaga, R.; Tanabe, S.; Hibino, H.; Morimoto, T.; Aoki, H., Nature Commun., 4, 1841 (2013)
[12] Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.R.; Geim, A. K., Science, 320, 1308 (2008)
[13] Bae, S.-H.; Lee, Y.; Sharma, B. K.; Lee, H.-J.; Kim, J.-H.; Ahn, J.-H., Carbon, 51, 236 (2013)
[14] Ni, G.-X.; Yang, H.-Z.; Ji, W.; Baeck, S.-J.; Toh, C.-T.; Ahn, J.-H.; Pereira, V. M.; Özyilmaz, B., Adv. Mater., 26, 1081 (2014)
[15] Rakheja, S.; Sengupta, P., J. Phys. D: Appl. Phys., 49, 115106 (2016)
[16] Nguyen, V. H.; Lherbier, A.; Charlier, J.-C., 2D Materials, 4, 025041 (2017)
[17] Pellegrino, F. M.D.; Angilella, G. G.N.; Pucci, R., Phys. Rev. B, 81, 035411 (2010)
[18] Pereira, V. M.; Ribeiro, R. M.; Peres, N. M.R.; Neto, A. H.C., Europhys. Lett., 92, 67001 (2010)
[19] Oliva-Leyva, M.; Naumis, G. G., 2D Materials, 2, 025001 (2015)
[20] Gusynin, V. P.; Sharapov, S. G., Phys. Rev. B, 73, 245411 (2006)
[21] Oliva-Leyva, M.; Naumis, G. G., J. Phys.: Condens. Matter, 26, 125302 (2014)
[22] Goerbig, M. O.; Fuchs, J.-N.; Montambaux, G.; Piéchon, F., Phys. Rev. B, 78, 045415 (2008)
[23] Morinari, T.; Himura, T.; Tohyama, T., J. Phys. Soc. Japan, 78, 023704 (2009)
[24] Pellegrino, F. M.D.; Angilella, G. G.N.; Pucci, R., Phys. Rev. B, 84, 195407 (2011)
[25] Oliva-Leyva, M.; Naumis, G. G., Phys. Rev. B, 88, 085430 (2013)
[26] Trescher, M.; Sbierski, B.; Brouwer, P. W.; Bergholtz, E. J., Phys. Rev. B, 91, 115135 (2015)
[27] Hirata, M.; Ishikawa, K.; Miyagawa, K.; Tamura, M.; Berthier, C.; Basko, D.; Kobayashi, A.; Matsuno, G.; Kanoda, K., Nature Commun., 7, 12666 (2016)
[29] Goerbig, M. O., Rev. Modern Phys., 83, 1193 (2011)
[30] Mahan, G. D., Many-Particle Physics (2000), Springer
[31] Tse, W.-K.; MacDonald, A. H., Phys. Rev. B, 84, 205327 (2011)
[32] Li, Z.; Carbotte, J. P., Phys. Rev. B, 88, 045414 (2013)
[33] Malcolm, J. D.; Nicol, E. J., Phys. Rev. B, 90, 035405 (2014)
[34] Oliva-Leyva, M.; Wang, C., J. Phys.: Condens. Matter, 29, 165301 (2017)
[35] Gusynin, V. P.; Sharapov, S. G.; Carbotte, J. P., J. Phys.: Condens. Matter, 19, 026222 (2007)
[36] Ferreira, A.; Viana-Gomes, J.; Bludov, Y. V.; Pereira, V.; Peres, N. M.R.; Castro Neto, A. H., Phys. Rev. B, 84, 235410 (2011)
[37] Stauber, T.; Peres, N. M.R.; Geim, A. K., Phys. Rev. B, 78, 085432 (2008)
[38] Crassee, I.; Levallois, J.; Walter, A. L.; Ostler, M.; Bostwick, A.; Rotenberg, E.; Seyller, T.; van der Marel, D.; Kuzmenko, A. B., Nat. Phys., 7, 48 (2010)
[39] Fialkovsky, I.; Vassilevich, D., Eur. Phys. J. B, 85, 384 (2012)
[40] Dóra, B.; Kailasvuori, J.; Moessner, R., Phys. Rev. B, 84, 195422 (2011)
[41] Malcolm, J. D.; Nicol, E. J., Phys. Rev. B, 90, 035405 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.