×

Geometry of Călugăreanu’s theorem. (English) Zbl 1370.53003

Summary: A central result in the space geometry of closed twisted ribbons is Călugăreanu’s theorem (also known as White’s formula, or the Călugăreanu-White-Fuller theorem). This enables the integer linking number of the two edges of the ribbon to be written as the sum of the ribbon twist (the rate of rotation of the ribbon about its axis) and its writhe. We show that twice the twist is the average, over all projection directions, of the number of places where the ribbon appears edge-on (signed appropriately)-the ‘local’ crossing number of the ribbon edges. This complements the common interpretation of writhe as the average number of signed self-crossings of the ribbon axis curve. Using the formalism we develop, we also construct a geometrically natural ribbon on any closed space curve-the ‘writhe framing’ ribbon. By definition, the twist of this ribbon compensates its writhe, so its linking number is always zero.

MSC:

53A04 Curves in Euclidean and related spaces

References:

[1] Bauer, W.R., Crick, F.H.C. & White, J.H. 1980 Supercoiled DNA. <i>Sci. Am.</i>&nbsp;<b>243</b>, 100–113.
[2] Călugăreanu, G. 1959 L’intégral de Gauss et l’analyse des noeuds tridimensionnels. <i>Rev. Math. Pures Appl.</i>&nbsp;<b>4</b>, 5–20.
[3] Adams, C.C. 1994 The knot book. New York: W.H. Freeman. · Zbl 0840.57001
[4] Călugăreanu, G. 1961 Sur les classes d’isotopie des noeuds tridimensionels et leurs invariants. <i>Czech. Math. J.</i>&nbsp;<b>11</b>, 588–625.
[5] Chiao, R.Y. & Wu, Y.-S. 1986 Manifestations of Berry’s topological phase for the photon. <i>Phys. Rev. Lett.</i>&nbsp;<b>57</b>, 933–936, (doi:10.1103/PhysRevLett.57.933).
[6] Dennis, M.R. 2004 Local phase structure of wave dislocation lines: twist and twirl. <i>J. Opt. A: Pure Appl. Opt.</i>&nbsp;<b>6</b>, S202–S208, (doi:10.1088/1464-4258/6/5/011).
[7] Eggar, M.H. 2000 On White’s formula. <i>J. Knot Theor. Ramif.</i>&nbsp;<b>9</b>, 611–615. · Zbl 0999.57008
[8] Epple, M. 1998 Orbits of asteroids, a braid, and the first link invariant. <i>Math. Intell.</i>&nbsp;<b>20</b>, 45–52. · Zbl 0918.01014
[9] Fuller, F.B. 1971 The writhing number of a space curve. <i>Proc. Natl Acad. Sci. USA</i>&nbsp;<b>68</b>, 815–819. · Zbl 0212.26301
[10] Fuller, F.B. 1978 Decomposition of the linking number of a closed ribbon: a problem from molecular biology. <i>Proc. Natl Acad. Sci. USA</i>&nbsp;<b>75</b>, 3557–3561. · Zbl 0395.92010
[11] Hannay, J.H. 1998 Cyclic rotations, contractibility, and Gauss–Bonnet. <i>J. Phys. A: Math. Gen.</i>&nbsp;<b>31</b>, L321–L324, (doi:10.1088/0305-4470/31/17/003). · Zbl 0967.53032
[12] Hoffman, K.A., Manning, R.S. & Maddocks, J.H. 2003 Link, twist, energy, and the stability of DNA minicircles. <i>Biopolymers</i>&nbsp;<b>70</b>, 145–157, (doi:10.1002/bip.10430).
[13] Kauffman, L.H. 2001 Knots and physics. 3rd edn. Singapore: World Scientific. · Zbl 1057.57001
[14] Kimball, J.C. & Frisch, H.L. 2004 Aharonov–Bohm effects in entangled molecules. <i>Phys. Rev. Lett.</i>&nbsp;<b>93</b>, 093001. (doi:10.1103/PhysRevLett.93.093001).
[15] Madsen, I. & Tornehave, J. 1997 From calculus to cohomology. Cambridge: Cambridge University Press. · Zbl 0884.57001
[16] Moffatt, H.K. & Ricca, R.L. 1992 Helicity and the Călugăreanu invariant. <i>Proc. R. Soc. A</i>&nbsp;<b>439</b>, 411–429. · Zbl 0771.57013
[17] Pohl, W.F. 1968 The self-linking number of a closed space curve. <i>J. Math. Mech.</i>&nbsp;<b>17</b>, 975–985. · Zbl 0164.54005
[18] Pohl, W.F. 1968 Some integral formulas for space curves and their generalization. <i>Am. J. Math.</i>&nbsp;<b>90</b>, 1321–1345. · Zbl 0181.50303
[19] Pohl, W.F. 1980 DNA and differential geometry. <i>Math. Intell.</i>&nbsp;<b>3</b>, 20–27.
[20] Starostin, E.L. 2002 Comment on ’Cyclic rotations, contractibility and Gauss–Bonnet’. <i>J. Phys. A: Math. Gen.</i>&nbsp;<b>35</b>, 6183–6190, (doi:10.1088/0305-4470/35/29/401). · Zbl 1066.53500
[21] White, J.H. 1969 Self-linking and the Gauss integral in higher dimensions. <i>Am. J. Math.</i>&nbsp;<b>91</b>, 693–728. · Zbl 0193.50903
[22] Winfree, A.T. & Strogatz, S.H. 1983 Singular filaments organize chemical waves in three dimensions. III. Knotted waves. <i>Physica D</i>&nbsp;<b>9</b>, 333–345.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.