×

The extension class and KMS states for Cuntz-Pimsner algebras of some bi-Hilbertian bimodules. (English) Zbl 1370.19004

A \(C^*\)-correspondence \(E\) over a \(C^*\)-algebra \(A\) produces a Toeplitz algebra \(\mathcal{T}_E\) and a Cuntz-Pimsner algebra \(\mathcal{O}_E\), which is a quotient of the Toeplitz algebra. If the left \(A\)-action on \(E\) is faithful, then the kernel of the quotient map from \(\mathcal{T}_E\) to \(\mathcal{O}_E\) is the \(C^*\)-algebra \(\mathcal{K}_E\) of compact operators on the Fock module, which is a full Hilbert \(A\)-module, hence Morita equivalent to \(A\). The resulting extension is used to compute the K-theory and KK-theory for the Cuntz-Pimsner algebra \(\mathcal{O}_E\). This computation becomes very explicit if the class of the Toeplitz extension in \(KK_1(\mathcal{O}_E,A)\) is known. This article describes explicit odd KK-cycles for this KK-class in certain cases.
First, if \(E\) is a self-Morita equivalence, then there is an explicit unbounded odd KK-cycle representing the class of the Toeplitz extension in \(KK_1(\mathcal{O}_E,A)\).
The main goal of the article is to describe a bounded odd KK-cycle that represents this class if \(E\) is bi-Hilbertian, that is, it also carries a left inner product for which the right action of \(A\) is by adjointable operators. This setting was previously considered by T. Kajiwara et al. [J. Funct. Anal. 215, No. 1, 1–49 (2004; Zbl 1067.46053)] to define an analogue of the Jones index for a correspondence. If \(E\) is bi-Hilbertian and satisfies a further technical assumption, then a certain conditional expectation \(\mathcal{O}_E\to A\) is defined. This is the main ingredient to describe a bounded odd KK-cycle that represents the class of the Toeplitz extension in \(KK_1(\mathcal{O}_E,A)\). The conditional expectation is related to a one-parameter group of automorphisms of \(\mathcal{T}_E\), which descends to \(\mathcal{O}_E\), and which differs from the usual gauge action.

MSC:

19K35 Kasparov theory (\(KK\)-theory)
46L08 \(C^*\)-modules
46L30 States of selfadjoint operator algebras

Citations:

Zbl 1067.46053

References:

[1] Abadie, B. and Achigar, M., Cuntz-Pimsner \(C^\ast \)-algebras and crossed products by Hilbert \(C^\ast \)-bimodules, Rocky Mountain J. Math.39 (2009) 1051-1081. · Zbl 1181.46040
[2] F. Arici, J. Kaad and G. Landi, Pimsner algebras and Gysin sequences from principal circle actions, arXiv:1409.5335v2, to appear in J. Noncommut. Geom. · Zbl 1342.19006
[3] Bourne, C., Carey, A. and Rennie, A., The bulk-edge correspondence for the quantum Hall effect in Kasparov theory, Lett. Math. Phys.105 (2015) 1253-1273. · Zbl 1325.81199
[4] Brownlowe, N. and Raeburn, I., Exel’s crossed product and relative Cuntz-Pimsner algebras, Math. Proc. Cambridge Philos. Soc.141 (2006) 497-508. · Zbl 1114.46045
[5] Carey, A. L., Neshveyev, S., Nest, R. and Rennie, A., Twisted cyclic theory, equivariant \(K K\)-theory and KMS states, J. Reine Angew. Math.650 (2011) 161-191. · Zbl 1218.19002
[6] Carlsen, T. M., Cuntz-Pimsner \(C^\ast \)-algebras associated with subshifts, Internat. J. Math.19 (2008) 47-70. · Zbl 1153.46038
[7] Carlsen, T. M. and Ortega, E., Algebraic Cuntz-Pimsner rings, Proc. Lond. Math. Soc. (3)103 (2011) 601-653. · Zbl 1235.16005
[8] Dykema, K. and Shlyakhtenko, D., Exactness of Cuntz-Pimsner \(C^\ast \)-algebras, Proc. Edinb. Math. Soc. (2)44 (2001) 425-444. · Zbl 0985.46034
[9] Dykema, K. and Smith, R., The completely bounded approximation property for extended Cuntz-Pimsner algebras, Houston J. Math.31 (2005) 829-840. · Zbl 1116.46045
[10] Exel, R., A new look at the crossed-product of a \(C^\ast \)-algebra by an endomorphism, Ergodic Theory Dynam. Systems28 (2008) 749-789. · Zbl 1153.46039
[11] Fowler, N. J., Laca, M. and Raeburn, I., The \(C^\ast \)-algebras of infinite graphs, Proc. Amer. Math. Soc.128 (2000) 2319-2327. · Zbl 0956.46035
[12] Fowler, N. J., Muhly, P. S. and Raeburn, I., Representations of Cuntz-Pimsner algebras, Indiana Univ. Math. J.52 (2003) 569-605. · Zbl 1034.46054
[13] Frank, M. and Larson, D. R., Frames in Hilbert \(C^\ast \)-modules and \(C^\ast \)-algebras, J. Operator Theory48 (2002) 273-314. · Zbl 1029.46087
[14] O. Gabriel and M. Grensing, Spectral triples and generalised crossed products, arXiv:1310.5993. · Zbl 1389.46098
[15] M. Hawkins, \(C^\ast \)-algebras of topological graphs, Ph.D. thesis, Wollongong, to appear March 2015.
[16] Hong, J. H. and Szymański, W., Quantum spheres and projective spaces as graph algebras, Comm. Math. Phys.232 (2002) 157-188. · Zbl 1015.81029
[17] Kajiwara, T., Pinzari, C. and Watatani, Y., Jones index theory for Hilbert \(C^\ast \)-bimodules and its equivalence with conjugation theory, J. Funct. Anal.215 (2004) 1-49. · Zbl 1067.46053
[18] Kaliszewski, S., Quigg, J. and Robertson, D., Functoriality of Cuntz-Pimsner correspondence maps, J. Math. Anal. Appl.405 (2013) 1-11. · Zbl 1312.46061
[19] Kasparov, G. G., The operator \(K\)-functor and extensions of \(C^\ast \)-algebras, Izv. Akad. Nauk SSSR44 (1980) 571-636. · Zbl 0448.46051
[20] Katsura, T., A class of \(C^\ast \)-algebras generalizing both graph algebras and homeomorphism \(C^\ast \)-algebras I. Fundamental results, Trans. Amer. Math. Soc.356 (2004) 4287-4322. · Zbl 1049.46039
[21] Kumjian, A., On certain Cuntz-Pimsner algebras, Pacific J. Math.217 (2004) 275-289. · Zbl 1075.46048
[22] Kumjian, A., Pask, D., Raeburn, I. and Renault, J., Graphs, groupoids, and Cuntz-Krieger algebras, J. Funct. Anal.144 (1997) 505-541. · Zbl 0929.46055
[23] Kwaśniewski, B. K. and Lebedev, A. V., Crossed products by endomorphisms and reduction of relations in relative Cuntz-Pimsner algebras, J. Funct. Anal.264 (2013) 1806-1847. · Zbl 1275.46053
[24] Laca, M. and Neshveyev, S., KMS states of quasi-free dynamics on Pimsner algebras, J. Funct. Anal.211 (2004) 457-482. · Zbl 1060.46049
[25] Laca, M., Raeburn, I., Ramagge, J. and Whittaker, M. F., Equilibrium states on the Cuntz-Pimsner algebras of self-similar actions, J. Funct. Anal.266 (2014) 6619-6661. · Zbl 1305.46059
[26] H. Li, Twisted topological graph algebras, Houston J. Math., to appear, arXiv:1404.7756. · Zbl 1391.46067
[27] Lledó, F. and Vasselli, E., On the nuclearity of certain Cuntz-Pimsner algebras, Math. Nachr.283 (2010) 752-757. · Zbl 1194.46081
[28] Lord, S., Rennie, A. and Varilly, J., Riemannian manifolds in noncommutative geometry, J. Geom. Phys.62 (2012) 1611-1638. · Zbl 1261.53032
[29] Mesland, B., Groupoid cocycles and \(K\)-theory, Münster J. Math.4 (2011) 227-250. · Zbl 1321.46073
[30] Meyer, C., Matrix Analysis and Applied Linear Algebra (SIAM, 2000). · Zbl 0962.15001
[31] Muhly, P. S. and Solel, B., On the simplicity of some Cuntz-Pimsner algebras, Math. Scand.83 (1998) 53-73. · Zbl 0940.46034
[32] Nekrashevych, V., Cuntz-Pimsner algebras of group actions, J. Operator Theory52 (2004) 223-249. · Zbl 1447.46045
[33] Pask, D. and Rennie, A., The noncommutative geometry of graph \(C^\ast \)-algebras I The index theorem, J. Funct. Anal.233 (2006) 92-134. · Zbl 1099.46047
[34] M. V. Pimsner, A class of \(C^\ast \)-algebras generalizing both Cuntz-Krieger algebras and crossed products by \(Z\), Fields Inst. Commun., Vol. 12, Free Probability Theory, Waterloo, ON, 1995 (Amer. Math. Soc., 1997), pp. 189-212. · Zbl 0871.46028
[35] Raeburn, I. and Williams, D. P., Morita Equivalence and Continuous-Trace \(C^\ast \)-Algebras (Amer. Math. Soc., 1998). · Zbl 0922.46050
[36] Schweizer, J., Dilations of \(C^\ast \)-correspondences and the simplicity of Cuntz-Pimsner algebras, J. Funct. Anal.180 (2001) 404-425. · Zbl 0985.46033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.