×

The precise shape of the eigenvalue intensity for a class of non-self-adjoint operators under random perturbations. (English. French summary) Zbl 1368.81076

Author’s abstract: We consider a non-self-adjoint \(h\)-differential model operator \(P_h\) in the semiclassical limit (\(h\to 0\)) subject to small random perturbations. Furthermore, we let the coupling constant \(\delta\) be \(e^{-\frac{1}{C h}} \leq \delta \ll h^\kappa\) for constants \(C, \kappa >0\) suitably large. Let \(\Sigma\) be the closure of the range of the principal symbol. Previous results on the same model by Hager, Bordeaux-Montrieux and Sjöstrand show that if \(\delta \gg e^{-\frac{1}{C h}}\) there is, with a probability close to 1, a Weyl law for the eigenvalues in the interior of the of the pseudospectrum up to a distance \(\gg (-h \ln (\delta h) )^{\frac23}\) to the boundary of \(\Sigma\). We study the intensity measure of the random point process of eigenvalues and prove an \(h\)-asymptotic formula for the average density of eigenvalues. With this we show that there are three distinct regions of different spectral behavior in \(\Sigma\): the interior of the pseudospectrum is solely governed by a Weyl law, close to its boundary there is a strong spectral accumulation given by a tunneling effect followed by a region where the density decays rapidly.

MSC:

81Q12 Nonselfadjoint operator theory in quantum theory including creation and destruction operators
81Q15 Perturbation theories for operators and differential equations in quantum theory
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
35S05 Pseudodifferential operators as generalizations of partial differential operators
35R60 PDEs with randomness, stochastic partial differential equations

Software:

Eigtool

References:

[1] Bordeaux-Montrieux, W.: Loi de Weyl presque sûre et résolvent pour des opérateurs différentiels non-autoadjoints. Thèse, pastel.archives-ouvertes.fr/docs/00/50/12/81/PDF/manuscript (2008) · Zbl 0919.32020
[2] Bordeaux-Montrieux, W., Sjöstrand, J.: Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds. Ann. Fac. Sci. Toulouse 19(3-4), 567-587 (2010) · Zbl 1228.47046 · doi:10.5802/afst.1257
[3] Christiansen, T.J., Zworski, M.: Probabilistic Weyl laws for quantized Tori. Commun. Math. Phys. 299, 305-334 (2010) · Zbl 1205.53092 · doi:10.1007/s00220-010-1047-2
[4] Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes, vol. I-II. Springer, Berlin (2008) · Zbl 1159.60003 · doi:10.1007/978-0-387-49835-5
[5] Davies, E.B.: Pseudospectra of differential operators. J. Oper. Theorem 43, 243-262 (1997) · Zbl 0998.34067
[6] Davies, E.B.: Non-self-adjoint operators and pseudospectra. In: Proc. Symp. Pure Math., vol. 76. Amer. Math. Soc., USA (2007) · Zbl 1132.47002
[7] Davies, E.B.: Pseudo-spectra, the harmonic oscillator and complex resonances. Proc. R. Soc. Lond. A 455(1982), 585-599 (1999) · Zbl 0931.70016 · doi:10.1098/rspa.1999.0325
[8] Davies, E.B., Hager, M.: Perturbations of Jordan matrices. J. Approx. Theory 156(1), 82-94 (2009) · Zbl 1164.15004 · doi:10.1016/j.jat.2008.04.021
[9] Dencker, N., Sjöstrand, J., Zworski, M.: Pseudospectra of semiclassical (pseudo-) differential operators. Commun. Pure Appl. Math. 57(3), 384-415 (2004) · Zbl 1054.35035 · doi:10.1002/cpa.20004
[10] Embree, M., Trefethen, L.N.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005) · Zbl 1085.15009
[11] Hager, M.: Instabilité Spectrale Semiclassique d’Opérateurs Non-Autoadjoints II. Annales Henri Poincaré 7, 1035-1064 (2006) · Zbl 1115.81032 · doi:10.1007/s00023-006-0275-7
[12] Hager, M.: Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle. Annales de la faculté des sciences de Toulouse Sé 6 15(2), 243-280 (2006) · Zbl 1131.34057 · doi:10.5802/afst.1121
[13] Hager, M., Sjöstrand, J.: Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators. Mathematische Annalen 342, 177-243 (2008) · Zbl 1151.35063 · doi:10.1007/s00208-008-0230-7
[14] Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. American Mathematical Society, USA (2009) · Zbl 1190.60038 · doi:10.1090/ulect/051
[15] Kato, T.: Perturbation Theory for Linear Operators, Classics in Mathematics, 2nd edn. Springer, Berlin (1995) · Zbl 0836.47009
[16] Shiffman, B.: Convergence of random zeros on complex manifolds. Sci. China Ser. A Math. 51, 707-720 (2008) · Zbl 1147.32010 · doi:10.1007/s11425-008-0060-9
[17] Shiffman, B., Zelditch, S.: Distribution of zeros of random and quantum chaotic sections of positive line bundles. Commun. Math. Phys. 200, 661-683 (1999) · Zbl 0919.32020 · doi:10.1007/s002200050544
[18] Sjöstrand, J.: Equilibrium distribution of zeros of random polynomials. Int. Math. Res. Not. 25-49 (2003) · Zbl 1194.47058
[19] Sjöstrand, J.: Number variance of random zeros on complex manifolds. Geom. Funct. Anal. 18, 1422-1475 (2008) · Zbl 1168.32009 · doi:10.1007/s00039-008-0686-3
[20] Sjöstrand, J.: Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations. Ann. Fac. Sci. Toul. 18(4), 739-795 (2009) · Zbl 1194.47058 · doi:10.5802/afst.1223
[21] Sjöstrand, J.: Spectral properties of non-self-adjoint operators. Actes des Journées d’é.d.p. d’Évian (2009) · Zbl 1194.47058
[22] Sjöstrand, J.: Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations. Ann. Fac. Toul. 19(2), 277-301 (2010) · Zbl 1206.35267 · doi:10.5802/afst.1244
[23] Sjöstrand, J.: Resolvent estimates for non-selfadjoint operators via semigroups. Around the Research of Vladimir Maz’ya III, International Mathematical Series, no. 13, pp. 359-384. Springer, Berlin (2010) · Zbl 1198.47068
[24] Sjöstrand, J.: Weyl law for semi-classical resonances with randomly perturbed potentials. Mémoires de la SMF 136 (2014) · Zbl 1304.35010
[25] Sjöstrand, J., Zworski, M.: Elementary linear algebra for advanced spectral problems. Annales de l’Institute Fourier 57, 2095-2141 (2007) · Zbl 1140.15009 · doi:10.5802/aif.2328
[26] Sodin, M.: Zeros of gaussian analytic functions and determinantal point processes. Math. Res. Lett. 7, 371-381 (2000) · Zbl 0986.60065 · doi:10.4310/MRL.2000.v7.n4.a2
[27] Trefethen, L.N.: Pseudospectra of linear operators. SIAM Rev. 39(3), 383-406 (1997) · Zbl 0896.15006 · doi:10.1137/S0036144595295284
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.