×

BKM’s criterion for the 3D nematic liquid crystal flows via two velocity components and molecular orientations. (English) Zbl 1367.76006

Summary: In this paper, we provide a sufficient condition, in terms of the horizontal gradient of two horizontal velocity components and the gradient of liquid crystal molecular orientation field, for the breakdown of local in time strong solutions to the three-dimensional incompressible nematic liquid crystal flows. More precisely, let \(T_\ast\) be the maximal existence time of the local strong solution \((u,d)\), then \(T_{\ast} < +\infty\) if and only if
\[ \int_0^{T_{\ast}} \left( \| \nabla_h u^h \| ^q_{\dot {B}^0_{p,\frac {2p}{3}}} + \| \nabla d \|^2_{\dot {B}^0_{\infty,\infty}}\right)\,dt=\infty \text{ with }\frac {3}{p}+\frac {2}{q}= 2,\quad \frac {3}{2}< p \leq \infty, \]
where \(u^h=(u^1,u^2)\), \(\nabla_h=(\partial_1,\partial_2)\). This result can be regarded as the generalization of the well-known Beale-Kato-Majda (BKM) type criterion and is even new for the three-dimensional incompressible Navier-Stokes equations.

MSC:

76A15 Liquid crystals
35B44 Blow-up in context of PDEs
35Q35 PDEs in connection with fluid mechanics

References:

[1] EricksenJL. Conservation laws for liquid crystals. Transactions of Society Rheogoniometer1961; 5: 23-34.
[2] LeslieF. Some constitutive equations for liquid crystals. Archive for Rational Mechanics and Analysis1968; 28: 265-283. · Zbl 0159.57101
[3] LeslieF. Theory of flow phenomena in liquid crystals. In The Theory of Liquid Crystals, Vol. 4 Academic Press: London‐New York, 1979; 1-81.
[4] LinF, WangC. Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. arXiv:1408.4138v1.
[5] LinF. Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena. Communications on Pure and Applied Mathematics1989; 42: 789-814. · Zbl 0703.35173
[6] LinF, LiuC. Nonparabolic dissipative systems modeling the flow of liquid crystals. Communications on Pure and Applied Mathematics1995; 48: 501-537. · Zbl 0842.35084
[7] LinF, LiuC. Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. Discrete and Continuous Dynamical Systems1996; 2: 1-23.
[8] CaffarelliL, KohnR, NirenbergL. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Communications on Pure and Applied Mathematics1982; 35: 771-831. · Zbl 0509.35067
[9] LiuQ, ZhaoJ, CuiS. A regularity criterion for the three‐dimensional nematic liquid crystal flow in terms of one directional derivative of the velocity. Journal of Mathematical Physics2011; 52: 033102. DOI: 10.1063/1.3567170. · Zbl 1315.76006
[10] WeiR, LiY, YaoZ. Two new regularity criteria for nematic liquid crystal flows. Journal of Mathematical Analysis and Applications2015; 424: 636-650. · Zbl 1305.35118
[11] ZhaoJ, LiuQ, CuiS. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure and Applied Analysis2013; 12(1): 341-357. · Zbl 1264.35007
[12] ZhouY, FanJ. A regularity criterion for the nematic liquid crystal flows. Journal of Inequalities and Applications2010; ID: 589697. DOI: 10.1155/2010/589697. · Zbl 1191.82112
[13] LinF, LinJ, WangC. Liquid crystal flows in two dimensions. Archive for Rational Mechanics and Analysis2010; 197: 297-336. · Zbl 1346.76011
[14] HongM. Global existence of solutions of the simplied Ericksen-Leslie system in dimension two. Calculus of Variations2011; 40: 15-36. · Zbl 1213.35014
[15] LinF, WangC. On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals. Chinese Annals of Mathematics, Series B2010; 31(6): 921-938. · Zbl 1208.35002
[16] XuX, ZhangZ. Global regularity and uniqueness of weak solution for the 2‐D liquid crystal flows. Journal of Differential Equations2012; 252: 1169-1181. · Zbl 1336.76005
[17] HinemanJ, WangC. Well‐posedness of nematic liquid crystal flow in \(l_{\operatorname{loc}}^3( \mathbb{R}^3)\).Archive for Rational Mechanics and Analysis2013; 210: 177-218. · Zbl 1283.35083
[18] LinJ, DingS. On the well‐posedness for the heat flow of harmonic maps and the hydrodynamic flow of nematic liquid crystals in critical spaces. Mathematical Methods in the Applied Sciences2012; 35: 158-173. · Zbl 1242.35006
[19] LiX, WangD. Global solution to the incompressible flow of liquid crystal. Journal of Differential Equations2012; 252: 745-767. · Zbl 1277.35121
[20] HaoY, LiuX. The existence and blow‐up criterion of liquid crystals system in critical Besov space. Communications on Pure and Applied Analysis2014; 13: 225-236. · Zbl 1273.76352
[21] WangC. Well‐posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data. Archive for Rational Mechanics and Analysis2011; 200: 1-19. · Zbl 1285.35085
[22] DuY, WangK. Space‐time regularity of the Koch and Tataru solutions to the liquid crystal equations. SIAM Journal on Mathematical Analysis2013; 45(6): 3838-3853. · Zbl 1355.35151
[23] DuY, WangK. Regularity of the solutions to the liquid crystal equations with small rough data. Journal of Differential Equations2014; 256: 65-81. · Zbl 1320.35125
[24] LiuQ. Space‐time derivative estimates of the Koch-Tataru solutions to the nematic liquid crystal system in Besov spaces. Journal of Differential Equations2015; 258: 4368-4397. · Zbl 1314.76011
[25] LiuS, XuX. Global existence and temporal decay for the nematic liquid crystal flows. Journal of Mathematical Analysis and Applications2015; 426: 228-246. · Zbl 1311.35226
[26] LiuQ, ZhangT, ZhaoJ. Global solutions to the 3D incompressible nematic liquid crystal system in critical space. Journal of Differential Equations2015; 258: 1519-1547. · Zbl 1308.35222
[27] LiuQ, ZhaoJ. Regularity criterion for the solution of nematic liquid crystal flows in terms of the \(\dot{B}_{\infty , \infty}^{- 1} \)‐norm. Journal of Mathematical Analysis and Applications2013; 407: 557-566. · Zbl 1306.76003
[28] WangC, XuX. On the rigidity of nematic liquid crystal flow on \(\mathbb{S}^2\). Journal of Functional Analysis2014; 266: 360-5376. · Zbl 1296.35152
[29] LerayJ. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Mathematica1934; 63: 193-248. · JFM 60.0726.05
[30] BealeJT, KatoT, MajdaA. Remarks on breakdown of smooth solutions for the 3D Euler equations. Communications in Mathematical Physics1984; 94: 61-66. · Zbl 0573.76029
[31] KozonoH, TaniuchiY. Bilinear estimates in BMO and the Navier-Stokes equations. Mathematische Zeitschrift2000; 235: 173-194. · Zbl 0970.35099
[32] KozonoH, OgawaT, TaniuchiY. The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi‐linear evolution equations. Mathematische Zeitschrift2002; 242: 251-278. · Zbl 1055.35087
[33] DongB, ZhangZ. The BKM criterion for the 3D Navier-Stokes equations via two velocity components. Nonlinear Analysis: Real World Applications2010; 11: 2415-2421. · Zbl 1196.35153
[34] WangC. Heat flow of harmonic maps whose gradients belong to \(L_x^n L_t^\infty \).Archive for Rational Mechanics and Analysis2008; 188: 309-349.
[35] HuangT, WangC. Blow up criterion for nematic liquid crystal flows. Communications in Partial Differential Equations2012; 37: 875-884. · Zbl 1247.35103
[36] LiuQ, ZhaoJ. Logarithmically improved blow‐up criteria for the nematic liquid crystal flows. Nonlinear Analysis: Real World Applications2014; 16: 178-190. · Zbl 1297.35188
[37] BahouriH, CheminJY, DanchinR. Fourier Analysis and Nonlinear Partial Differential Equations Grundlehren der mathematischen Wissenschaften, Vol. 343. Springer: Berlin, 2011. · Zbl 1227.35004
[38] TriebelH. Theory of Function Spaces. Monogr Math, Vol. 78. Basel: Birkhäuser Verlag, 1983. · Zbl 0546.46027
[39] MeyerY, GerardP, OruF. Inégalités de Sobolev Précisées, Équations aux Dérivées Partielles. Séminaire de l’Ecole Polytechnique, exposé No. IV (1996-1997). · Zbl 1066.46501
[40] GuoZ, GalaS. Remarks on logarithmical regularity criteria for the Navier-Stokes equations. Journal of Mathematical Physics2011; 52: 063503. DOI: 10.1063/1.3569967. · Zbl 1317.35174
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.