×

A uniqueness result for a semipositone \(p\)-Laplacian problem on the exterior of a ball. (English) Zbl 1364.35105

Under consideration is the problem \[ -\text{div\,}(|\nabla u|^{p-2}\nabla u)=\lambda k(|x|)f(u)\;(x\in G=\{x:|x|>r_{0}>0\},\;p>1), \eqno{(1)} \]
\[ \;u|_{|x|=r_{0}}=0,\;\lim_{|x|\to \infty} u=0. \eqno{(2)} \] The functions \(f\in C[0,\infty)\cap C^{1}(0,\infty) \) and \(k\in C^{1}[r_{0},\infty)\) satisfy the conditions: \(f(0) < 0\), \(f'(s)> 0\) on \((0, +\infty)\) and \(f(s)\to \infty\) as \(s \to \infty\), \(\lim\sup_{s\to 0+}sf'(s) < \infty\), \(\lim_{s\to +\infty}f(s)/s^{p-1}=0\), \(k(r) > 0\) for \(r\geq r_{0}\) and \(k(r)\leq c/r^{n+\sigma}\) for some \(c>0\) and \(\sigma\in (0,(n-p)/(p-1))\), \(f(s)/s^{q}\) is nonincreasing on \([a,+\infty)\) for some \(a>0\) and \(q\in (0,p-1)\), the function \(r^{p(n-1)/(p-1)}k(r)\) is strictly increasing on \([r_{0},\infty)\). The main result of the article is that a positive radial solution to the problem (1), (2) is unique if the parameter \(\lambda \geq 1\) is sufficiently large.

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35B09 Positive solutions to PDEs
Full Text: DOI

References:

[1] Castro, Alfonso; Ali, Ismael; Shivaji, R., Uniqueness and stability of nonnegative solutions for semipositone problems in a ball, Proc. Amer. Math. Soc., 117, 3, 775-782 (1993) · Zbl 0770.34019
[2] Castro, Alfonso; Garner, J. B.; Shivaji, R., Existence results for classes of sublinear semipositone problems, Results Math., 23, 3-4, 214-220 (1993) · Zbl 0785.35073
[3] Castro, Alfonso; Hassanpour, M.; Shivaji, R., Uniqueness of non-negative solutions for a semipositone problem with concave nonlinearity, Comm. Partial Differential Equations, 20, 11-12, 1927-1936 (1995) · Zbl 0836.35049
[4] Castro, Alfonso; Sankar, Lakshmi; Shivaji, R., Uniqueness of nonnegative solutions for semipositone problems on exterior domains, J. Math. Anal. Appl., 394, 1, 432-437 (2012) · Zbl 1253.35004
[6] Drábek, P.; Sankar, Lakshmi, Singular quasilinear elliptic problems on unbounded domains, Nonlinear Anal., 109, 148-155 (2014) · Zbl 1296.35050
[7] Hai, D. D., Uniqueness of positive solutions for a class of quasilinear problems, Nonlinear Anal., 69, 8, 2720-2732 (2008) · Zbl 1156.35043
[8] Hai, D. D.; Shivaji, R., Existence and uniqueness for a class of quasilinear elliptic boundary value problems, J. Differential Equations, 193, 2, 500-510 (2003) · Zbl 1042.34045
[9] Hai, D. D.; Shivaji, R., An existence result on positive solutions for a class of p-Laplacian systems, Nonlinear Anal., 56, 7, 1007-1010 (2004) · Zbl 1330.35132
[10] Hai, D. D.; Shivaji, R., An existence result on positive solutions for a class of semilinear elliptic systems, Proc. Roy. Soc. Edinburgh, 134A, 1, 137-141 (2004) · Zbl 1067.35026
[11] Hai, D. D.; Shivaji, R., Uniqueness of positive solutions for a class of semipositone elliptic systems, Nonlinear Anal., 66, 2, 396-402 (2007) · Zbl 1220.35038
[12] Kyoung Lee, Eun; Sankar, Lakshmi; Shivaji, R., Positive solutions for infinite semipositone problems on exterior domains, Differential Integral Equations, 24, 9-10, 861-875 (2011) · Zbl 1249.35081
[13] Kyoung Lee, Eun; Shivaji, R.; Ye, Jinglong, Classes of infinite semipositone systems, Proc. Roy. Soc. Edinburgh, 139A, 4, 853-865 (2009) · Zbl 1182.35132
[14] Manásevich, R.; Mawhin, J., Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators, J. Korean Math. Soc., 378, 5, 665-685 (2000) · Zbl 0976.34013
[15] Sankar, Lakshmi, Classes of singular nonlinear eigenvalue problems with semipositone structure (2013), Mississippi State University, Ph.D. thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.