×

Dynamics of internal jets in the merging of two droplets of unequal sizes. (English) Zbl 1359.76297

Summary: The head-on collision, merging and internal mixing dynamics of two unequal-sized droplets were experimentally studied and interpreted, using water, \(n\)-decane and \(n\)-tetradecane to identify the distinguishing effects of surface tension and liquid viscosity on the merging and mixing patterns. It is shown that, upon merging of water and \(n\)-decane droplets, mushroom-like jets of dissimilar characteristics develop within the merged mass for small and large values of the impact Weber number (We), and that such jets are not developed for intermediate values of We. Furthermore, such jet-like mixing patterns were not observed for droplets of \(n\)-tetradecane, which has smaller surface tension and larger viscosity as compared to water. A regime nomogram relating the Ohnesorge and symmetric Weber numbers is constructed, providing a unified interpretation of the internal mixing patterns. Numerical simulations based on an improved volume-of-fluid method and an adaptive mesh refinement algorithm provide auxiliary diagnoses of the flow fields and the observed phenomena.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows

Software:

Gerris

References:

[1] Anilkumar, A. V.; Lee, C. P.; Wang, T. G., Surface-tension-induced mixing following coalescence of initially stationary drops, Phys. Fluids A, 3, 2587-2591, (1991) · doi:10.1063/1.858199
[2] Ashgriz, N.; Poo, J. Y., Coalescence and separation in binary collisions of liquid drops, J. Fluid Mech., 221, 183-204, (1990) · doi:10.1017/S0022112090003536
[3] Blanchette, F., Simulation of mixing within drops due to surface tension variations, Phys. Rev. Lett., 105, (2010)
[4] Blanchette, F.; Bigioni, T. P., Dynamics of drop coalescence at fluid interfaces, J. Fluid Mech., 620, 333-352, (2009) · Zbl 1156.76451 · doi:10.1017/S0022112008004801
[5] Blanchette, F.; Messio, L.; Bush, J. W. M., The influence of surface tension gradients on drop coalescence, Phys. Fluids, 21, (2009) · Zbl 1183.76096 · doi:10.1063/1.3177339
[6] Bouwhuis, W.; Van Der Veen, R. C. A.; Tran, T.; Keij, D. L.; Winkels, K. G.; Peters, I. R.; Van Der Meer, D.; Sun, C.; Snoeijer, J. H.; Lohse, D., Maximal air bubble entrainment at liquid-drop impact, Phys. Rev. Lett., 109, (2012) · doi:10.1103/PhysRevLett.109.264501
[7] Chen, X. D.; Ma, D. J.; Yang, V.; Popinet, S., High-fidelity simulations of impinging jet atomization, Atomiz. Sprays, 23, 1079-1101, (2013) · doi:10.1615/AtomizSpr.2013007619
[8] Deike, L.; Popinet, S.; Melville, W. K., Capillary effects on wave breaking, J. Fluid Mech., 769, 541-569, (2015) · Zbl 1431.76031 · doi:10.1017/jfm.2015.103
[9] Deng, Q.; Anilkumar, A. V.; Wang, T. G., The role of viscosity and surface tension in bubble entrapment during drop impact onto a deep liquid pool, J. Fluid Mech., 578, 119-138, (2007) · Zbl 1111.76302 · doi:10.1017/S0022112007004892
[10] Fuster, D.; Agbaglah, G.; Josserand, C.; Popinet, S.; Zaleski, S., Numerical simulation of droplets, bubbles and waves: state of the art, Fluid Dyn. Res., 41, (2009) · Zbl 1423.76002 · doi:10.1088/0169-5983/41/6/065001
[11] Hsiao, M. Y.; Lichter, S.; Quintero, L. G., The critical Weber number for vortex and jet formation for drops impinging on a liquid pool, Phys. Fluids, 31, 3560-3562, (1988) · doi:10.1063/1.866872
[12] Jiang, Y. J.; Umemura, A.; Law, C. K., An experimental investigation on the collision behavior of hydrocarbon droplets, J. Fluid Mech., 234, 171-190, (1992) · doi:10.1017/S0022112092000740
[13] Keij, D. L.; Winkels, K. G.; Castelijns, H.; Riepen, M.; Snoeijer, J. H., Bubble formation during the collision of a sessile drop with a meniscus, Phys. Fluids, 25, (2013) · doi:10.1063/1.4816077
[14] Law, C. K., Fuel options for next-generation chemical propulsion, AIAA J., 50, 19-36, (2012) · doi:10.2514/1.J051328
[15] Liu, D.; Zhang, P.; Law, C. K.; Guo, Y. C., Collision dynamics and mixing of unequal-size droplets, Intl J. Heat Mass Transfer, 57, 421-428, (2013) · doi:10.1016/j.ijheatmasstransfer.2012.10.023
[16] Nobari, M. R.1993 Numerical simulations of drop collisions and coalescence. PhD thesis, University of Michigan.
[17] Pan, K. L.; Law, C. K.; Zhou, B., Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision, J. Appl. Phys., 103, (2008)
[18] Popinet, S., Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys., 190, 572-600, (2003) · Zbl 1076.76002 · doi:10.1016/S0021-9991(03)00298-5
[19] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys., 228, 5838-5866, (2009) · Zbl 1280.76020 · doi:10.1016/j.jcp.2009.04.042
[20] Rabe, C.; Malet, J.; Feuillebois, F., Experimental investigation of water droplet binary collisions and description of outcomes with a symmetric Weber number, Phys. Fluids, 22, (2010) · Zbl 1190.76100 · doi:10.1063/1.3392768
[21] Shankar, P. N.; Kumar, M., Vortex rings generated by drops just coalescing with a pool, Phys. Fluids, 7, 737-746, (1995) · doi:10.1063/1.868597
[22] Solomon, Y.; Defini, S. J.; Pourpoint, T. L.; Anderson, W. E., Gelled monomethyl hydrazine hypergolic droplet investigation, J. Propul. Power, 29, 79-86, (2013) · doi:10.2514/1.B34634
[23] Sun, K.; Wang, T.; Zhang, P.; Law, C. K., Non-Newtonian flow effects on the coalescence and mixing of initially stationary droplets of shear-thinning fluids, Phys. Rev. E, 91, (2015)
[24] Sun, K.; Zhang, P.; Law, C. K.; Wang, T., Collision dynamics and internal mixing of droplets of non-Newtonian liquids, Phys. Rev. Appl., 4, (2015) · doi:10.1103/PhysRevApplied.4.054013
[25] Tang, C.; Zhang, P.; Law, C. K., Bouncing, coalescence, and separation in head-on collision of unequal-size droplets, Phys. Fluids, 24, (2012)
[26] Thomson, J. J.; Newall, H., On the formation of vortex rings by drops falling into liquids, and some allied phenomena, Proc. R. Soc. Lond., 39, 417-436, (1885) · doi:10.1098/rspl.1885.0034
[27] Thoraval, M. J.; Takehara, K.; Etoh, T. G.; Popinet, S.; Ray, P.; Josserand, C.; Zaleski, S.; Thoroddsen, S. T., Von Karman vortex street within an impacting drop, Phys. Rev. Lett., 108, (2012) · doi:10.1103/PhysRevLett.108.264506
[28] Thoroddsen, S. T.; Etoh, T. G.; Takehara, K., Air entrapment under an impacting drop, J. Fluid Mech., 478, 125-134, (2003) · Zbl 1032.76507 · doi:10.1017/S0022112002003427
[29] Weiss, D. A.; Yarin, A. L., Single drop impact onto liquid films: neck distortion, jetting, tiny bubble entrainment, and crown formation, J. Fluid Mech., 385, 229-254, (1999) · Zbl 0931.76011 · doi:10.1017/S002211209800411X
[30] Yeh, S. I.; Fang, W. F.; Sheen, H. J.; Yang, J. T., Droplets coalescence and mixing with identical and distinct surface tension on a wettability gradient surface, Microfluid. Nanofluid., 14, 785-795, (2013) · doi:10.1007/s10404-012-1096-2
[31] Zhang, P.; Law, C. K., An analysis of head-on droplet collision with large deformation in gaseous medium, Phys. Fluids, 23, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.