×

A Gross-Kohnen-Zagier type theorem for higher-codimensional Heegner cycles. (English) Zbl 1359.11066

Given \(f\) a weight \(2\) newform on \(\Gamma_0(N)\) (with \(N\) square-free for simplicity), the celebrated paper by B. Gross et al. [Math. Ann. 278, 497–562 (1987; Zbl 0641.14013)], proves that the \(f\)-component of Heegner points attached to quadratic imaginary fields of discriminant \(D\) such that all primes dividing \(N\) are split in \(K\) on the Jacobian of \(X_0(N)\) all lie in the same line (as \(D\) varies) and their position in this line gives the coefficients of a modular form \(g\) of weight \(3/2\), which is in Shimura-Shintani correspondence with \(f\). Subsequently, R. E. Borcherds [Duke Math. J. 97, No. 2, 219–233 (1999; Zbl 0967.11022); correction ibid. 105, No. 1, 183–184 (2000)] generalized this result using his notion of singular theta lifting. The aim of this paper is to generalize these type of results to higher weight modular forms, replacing Heegner points with CM Heegner cycles on Kuga-Sato varieties of Shimura curves. More precisely, the author shows that Heegner cycles of codimension \(m+1\) inside Kuga-Sato type varieties of dimension \(2m+1\) are coefficients of modular forms of weight \(3/2+m\) in the appropriate quotient group (for \(m=0\), recovering the known results of Gross-Kohnen-Zagier and Borcherds). The approach taken is similar to that of Borcherds, and the results obtained are complete, clear and perfectly analogous to those by Gross-Kohnen-Zagier and Borcherds. Complementary to this work, we shall notice that for CM Heegner cycles over modular curves, H. Xue proved a similar result following the original approach of Gross-Kohnen-Zagier: see [Math. Res. Lett. 17, No. 3, 573–586 (2010; Zbl 1227.11064)].

MSC:

11G40 \(L\)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture
11G18 Arithmetic aspects of modular and Shimura varieties
11F32 Modular correspondences, etc.

References:

[1] Besser, A: CM cycles over Shimura curves. J. Algebraic Geometry. 4, 659-692 (1993). · Zbl 0898.14004
[2] Borcherds, RE: Automorphic forms with singularities on Grassmannians. Invent. Math. 132, 491-562 (1998). · Zbl 0919.11036 · doi:10.1007/s002220050232
[3] Borcherds, RE: The Gross-Kohnen-Zagier Theorem in higher dimensions. Duke Math J. 97(2), 219-233 (1999). Correction: Duke Math J., vol 105 no. 1, 183-184 (2000). · Zbl 0967.11022 · doi:10.1215/S0012-7094-99-09710-7
[4] Bringmann, K, Kane, B: Cycle integrals of meromorphic modular forms and CM-values of automorphic forms, submitted for publication.a.i. http://arxiv.org/abs/1409.0793. · Zbl 0564.10023
[5] Bringmann, K, Kane, B, Kohnen, W: Locally harmonic Maass forms and the kernel of the Shintani lift. Int. Math. Res. Not. 2015(11), 3185-3224 (2015). · Zbl 1381.11040
[6] Bruinier, JH: Borcherds products on O(2,l) and Chern classes of Heegner divisors, Lecture Notes in Mathematics 1780, p. 154. Springer-Verlag, Berlin, Heidelberg, New York (2002). · Zbl 1004.11021
[7] Bruinier, JH, Funke, J: On two geometric theta lifts. Duke Math J. 125(1), 45-90 (2004). · Zbl 1088.11030 · doi:10.1215/S0012-7094-04-12513-8
[8] Bruinier, JH, Ono, K: Heeger divisors, L-Functions, and harmonic weak maass forms. Ann. Math. 172, 2135-2181 (2010). · Zbl 1244.11046 · doi:10.4007/annals.2010.172.2135
[9] Bruinier, JH, van der Geer, G, Harder, G, Zagier, D: The 1-2-3 of Modular Forms, p. 266. Springer-Verlag, Berlin, Heidelberg (2008). · Zbl 1197.11047
[10] Brylinski, J-L: Heights for local systems on curves. Duke Math. J. 105(1), 1-26 (1989). · Zbl 0702.14016 · doi:10.1215/S0012-7094-89-05901-2
[11] Cohen, H: Sums Involving the Values at Negative Integers of L-Functions of Quadratic Characters. Math. Ann. 217, 171-185 (1975). · Zbl 0311.10030 · doi:10.1007/BF01436180
[12] Eichler, M, Zagier, D: The theory of Jacobi forms. Progress in Mathematics, vol. 55, Birkhäuser, Boston, Basel, Stuttgart (1985). · Zbl 0554.10018
[13] Funke, J, Millson, JJ: Cycles with local coefficients for orthogonal groups and vector-valued Siegel modular forms. Am. J. Math.128, 899-948 (2006). · Zbl 1133.11037 · doi:10.1353/ajm.2006.0032
[14] Funke, J, Millson, JJ: Spectacle cycles with coefficients and modular forms of half-integral weight, in Arithmetic Geometry and Automorphic Forms, in honor of Stephen S. Kudla. Higher Eduction Press and International Press (2011). · Zbl 1320.11036
[15] Gross, B, Kohnen, W, Zagier, D: Heegner points and derivatives of L-Series, II. Math. Ann. 278(1-4), 497-562 (1987). · Zbl 0641.14013 · doi:10.1007/BF01458081
[16] Hirzebruch, F, Zagier, D: Intersection numbers of curves on Hilbert modular surfaces and modular forms of Nebentypus. Invent. Math.36, 57-114 (1976). · Zbl 0332.14009 · doi:10.1007/BF01390005
[17] Hopkins, K: Higher weight Heegner points. Exp. Math.19(3), 257-266 (2010). · Zbl 1263.11058 · doi:10.1080/10586458.2010.10390622
[18] Kohnen, W: Modular forms of half-integral weight on Γ0(4). Math. Ann.248, 249-266 (1980). · Zbl 0416.10023 · doi:10.1007/BF01420529
[19] McGraw, WJ: Rationality of vector valued modular forms associated to the weil representation. Math. Annalen. 326, 105-122 (2003). · Zbl 1018.11021 · doi:10.1007/s00208-003-0413-1
[20] Milne, J: Abelian Varieties (v2.00), 166+vi (2008). Available on www.jmilne.org/math/. · Zbl 1384.11070
[21] Nakajima, S: On invariant differential operators on bounded symmetric domains of type IV. Proc. Japan Acad.58(Ser. A), 235-238 (1982). · Zbl 0525.32029 · doi:10.3792/pjaa.58.235
[22] Scheithauer, NR: The Weil representation of SL2(ℤ)\(SL_2(\mathbb{Z})\) and some applications. Int. Math. Res. Not.2009(8), 1488-1545 (2009). · Zbl 1244.11043
[23] Schoen, C: Complex multiplication cycles on elliptic modular threefolds. Duke Math. J.53, 771-794 (1986). · Zbl 0623.14018 · doi:10.1215/S0012-7094-86-05343-3
[24] Scholl, AJ: Fourier coefficients of Eisenstein series on non-congruence subgroups. Math. Proc. Camb. Phil. Soc.99, 11-17 (1986). · Zbl 0564.10023 · doi:10.1017/S0305004100063866
[25] Shintani, T: On Construction of Holomorphic Cusp Forms of Half Integral Weight. Nagoya Math. J.58, 83-126 (1975). · Zbl 0316.10016
[26] Strömberg, F: Weil Representations Associated to Finite Quadratic Modules. Math. Z. 275(1), 509-527 (2013). · Zbl 1327.11032 · doi:10.1007/s00209-013-1145-x
[27] Vignéras, MF: Arithmétique des Algèbres des Quaternions, Lecture Note in Math. 800 (1980). · Zbl 0422.12008
[28] Zemel, S: A p-adic approach to the weil representation of discriminant forms arising from even lattices. Math. Ann. Québec. 39(1), 61-89 (2015). · Zbl 1384.11070 · doi:10.1007/s40316-015-0034-6
[29] Zemel, S: Weight changing operators for automorphic forms on grassmannians and differential properties of certain theta lifts, submitted for publication. a.i. http://arxiv.org/abs/1409.0793. · Zbl 1495.11061
[30] Zemel, S: Regularized Pairings of Meromorphic Modular Forms and Theta Lifts, submitted for publication. a.i. http://arxiv.org/abs/1409.0793. · Zbl 1406.11043
[31] Zhang, S: Heights of Heegner Cycles and Derivatives of L-Series. Invent. Math.130(1), 99-152 (1997). · Zbl 0882.11029 · doi:10.1007/s002220050179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.