×

Bäcklund transformation, infinite conservation laws and periodic wave solutions of a generalized (3+1)-dimensional nonlinear wave in liquid with gas bubbles. (English) Zbl 1351.37249

Summary: A generalized \((3+1)\)-dimensional nonlinear wave is investigated, which describes many nonlinear phenomena in liquid containing gas bubbles. In this paper, a lucid and systematic approach is proposed to systematically study the complete integrability of the equation by using Bell’s polynomials scheme. Its bilinear equation, \(N\)-soliton solution and Bäcklund transformation with explicit formulas are successfully structured, which can be reduced to the analogues of \((3+1)\)-dimensional KP equation, \((3+1)\)-dimensional nonlinear wave equation and Korteweg-de Vries equation, respectively. Moreover, the infinite conservation laws of the equation are found by using its Bäcklund transformation. All conserved densities and fluxes are presented with explicit recursion formulas. Furthermore, by employing Riemann theta function, the one- and two-periodic wave solutions for the equation are constructed well. Finally, an asymptotic relation is presented, which implies that the periodic wave solutions can be degenerated to the soliton solutions under some special conditions.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
76T10 Liquid-gas two-phase flows, bubbly flows
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI

References:

[1] Ablowitz, M.J., Clarkson, P.A.: Solitons; Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991) · Zbl 0762.35001 · doi:10.1017/CBO9780511623998
[2] Matveev, V.B., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (1991) · Zbl 0744.35045 · doi:10.1007/978-3-662-00922-2
[3] Rogers, C., Schief, W.K.: Bäcklund and Darboux Transformations Geometry and Modern Applications in Soliton Theory. Cambridge University Press, Cambridge (2002) · Zbl 1019.53002 · doi:10.1017/CBO9780511606359
[4] Hirota, R.: Direct Methods in Soliton Theory. Springer, Berlin (2004) · doi:10.1017/CBO9780511543043
[5] Hu, X.B., Li, C.X., Nimmo, J.J.C., Yu, G.F.: An integrable symmetric (2+1)-dimensional Lotka-Volterra equation and a family of its solutions. J. Phys. A Math. Gen. 38, 195-204 (2005) · Zbl 1063.37063 · doi:10.1088/0305-4470/38/1/014
[6] Zhang, D.J., Chen, D.Y.: Some general formulas in the Sato’s theory. J. Phys. Soc. Jpn. 72(2), 448-449 (2003) · Zbl 1067.35097 · doi:10.1143/JPSJ.72.448
[7] Ma, W.X., You, Y.C.: Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans. Am. Math. Soc. 357, 1753-1778 (2005) · Zbl 1062.37077 · doi:10.1090/S0002-9947-04-03726-2
[8] Nakamura, A.: A direct method of calculating periodic wave solutions to nonlinear evolution equations. J. Phys. Soc. Jpn. 47, 1701-1706 (1979) · Zbl 1334.35006 · doi:10.1143/JPSJ.47.1701
[9] Fan, E.G., Hon, Y.C.: Quasiperiodic waves and asymptotic behaviour for Bogoyavlenskii’s breaking soliton equation in (2+1)- dimensions. Phys. Rev. E 78, 036607 (2008). (13pp) · doi:10.1103/PhysRevE.78.036607
[10] Hon, Y.C., Fan, E.G.: Binary Bell polynomial approach to the non-isospectral and variable-coefficient KP equations. IMA J. Appl. Math. 77(2), 236-251 (2012) · Zbl 1251.35127 · doi:10.1093/imamat/hxr023
[11] Fan, E.G.: The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials. Phys. Lett. A 375, 493-497 (2011) · Zbl 1241.35176 · doi:10.1016/j.physleta.2010.11.038
[12] Ma, W.X.: Trilinear equations, Bell polynomials, and resonant solutions. Front. Math. China 8, 1139-1156 (2013) · Zbl 1276.35131 · doi:10.1007/s11464-013-0319-5
[13] Ma, W.X.: Bilinear equations and resonant solutions characterized by Bell polynomials. Rep. Math. Phys. 72, 41-56 (2013) · Zbl 1396.35054 · doi:10.1016/S0034-4877(14)60003-3
[14] Ma, W.X., Zhou, R.G., Gao, L.: Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in (2+1)-dimensions. Mod. Phys. Lett. A. 21, 1677-1688 (2009) · Zbl 1168.35426 · doi:10.1142/S0217732309030096
[15] Wang, Y.H., Chen, Y.: Integrability of the modified generalised Vakhnenko equation. J. Math. Phys. 53, 123504 (2012) · Zbl 1296.37049 · doi:10.1063/1.4764845
[16] Wang, Y.F., Tian, B., Wang, P., Li, M., Jiang, Y.: Bell polynomial approach and soliton solutions for the Zhiber-Shabat equation and (2+1)-dimensional Gardner equation with symbolic computation. Nonlinear Dyn. 69, 2031-2040 (2012) · Zbl 1263.35177 · doi:10.1007/s11071-012-0405-3
[17] Tian, S.F., Zhang, H.Q.: Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations. J. Math. Anal. Appl. 371, 585-608 (2010) · Zbl 1201.35072 · doi:10.1016/j.jmaa.2010.05.070
[18] Tian, S.F., Zhang, H.Q.: A kind of explicit Riemann theta functions periodic waves solutions for discrete soliton equations. Commun. Nonlinear Sci. Numer. Simulat. 16, 173-186 (2011) · Zbl 1221.37153 · doi:10.1016/j.cnsns.2010.04.003
[19] Tian, S.F., Zhang, H.Q.: Riemann theta functions periodic wave solutions and rational characteristics for the (1+1)-dimensional and (2+1)-dimensional Ito equation. Chaos, Solitons Fractals 47, 27-41 (2013) · Zbl 1258.35011 · doi:10.1016/j.chaos.2012.12.004
[20] Tian, S.F., Zhang, H.Q.: On the integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation. J. Phys. A. Math. Theor. 45, 055203 (2012). (29pp) · Zbl 1232.35144 · doi:10.1088/1751-8113/45/5/055203
[21] Tian, S.F., Zhang, H.Q.: On the integrability of a generalized variable-coefficient forced Korteweg-de Vries equation in fluids. Stud. Appl. Math. 132, 212-24 (2014) · Zbl 1288.35403 · doi:10.1111/sapm.12026
[22] Tian, B., Gao, Y.T.: Variable-coefficient balancing-act method and variable-coefficient KdV equation from fluid dynamics and plasma physics. Eur. Phys. J. B. 22, 351-360 (2001) · doi:10.1007/s100520100796
[23] Lü, X., Tian, B., Zhang, H.Q., Li, H.: Generalized (2 + 1)- dimensional Gardner model: bilinear equations, Bäcklund transformation, Lax representation and interaction mechanisms. Nonlinear Dyn. 67, 2279-2290 (2012) · Zbl 1247.35107 · doi:10.1007/s11071-011-0145-9
[24] Wazwaz, A.M.: Partial Differential Equations: Methods and Applications. Balkema Publishers, The Netherlands (2002) · Zbl 1079.35001
[25] Biswas, A.: Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients. Nonlin. Dyn. 58, 345-348 (2009) · Zbl 1183.35241 · doi:10.1007/s11071-009-9480-5
[26] Biswas, A., Ismail, M.S.: 1-Soliton solution of the coupled KdV equation and Gear-Grimshaw model. Appl. Math. Comput. 216, 3662-3670 (2010) · Zbl 1197.35215 · doi:10.1016/j.amc.2010.05.017
[27] Biswas, A.: 1-Soliton solution of the \[K(m, n)K\](m,n) equation with generalized evolution and time-dependent damping and dispersion. Comput. Math. Appl. 59, 2536-2540 (2010) · Zbl 1193.35181 · doi:10.1016/j.camwa.2010.01.013
[28] Wang, G.W., Xu, T.Z., Ebadi, G., Johnson, S., Strong, A.J., Biswas, A.: Singular solitons, shock waves, and other solutions to potential KdV equation. Nonlin. Dyn. 76, 1059-1068 (2014) · Zbl 1306.35116 · doi:10.1007/s11071-013-1189-9
[29] Tian, S.F., Zhang, T.T., Ma, P.L., Zhang, X.Y.: Lie symmetries and nonlocally related systems of the continuous and discrete dispersive long waves system by geometric approach. J. Nonlinear Math. Phys. 22, 180-193 (2015) · Zbl 1420.35297 · doi:10.1080/14029251.2015.1023562
[30] Younis, M., Ali, S.: Solitary wave and shock wave solitons to the transmission line model for nano-ionic currents along microtubules. Appl. Math. Comput. 246, 460-463 (2014) · Zbl 1338.35101 · doi:10.1016/j.amc.2014.08.053
[31] Zhang, Y., Song, Y., Cheng, L., Ge, J.Y., Wei, W.W.: Exact solutions and Painlevé analysis of a new (2+1)-dimensional generalized KdV equation. Nonlinear Dyn. 68, 445-458 (2012) · Zbl 1254.35206 · doi:10.1007/s11071-011-0228-7
[32] Guo, R., Liu, Y.F., Hao, H.Q., Qi, F.H.: Coherently coupled solitons, breathers and rogue waves for polarized optical waves in an isotropic medium. Nonlinear Dyn. 80, 1221-1230 (2015) · doi:10.1007/s11071-015-1938-z
[33] Guo, R., Hao, H.Q.: Breathers and localized solitons for the Hirota-Maxwell-Bloch system on constant backgrounds in erbium doped fibers. Ann. Phys. 344, 10-16 (2014) · Zbl 1343.81265 · doi:10.1016/j.aop.2014.02.006
[34] Wang, L., Gao, yt, Meng, D.X., Gai, X.L., Xu, P.B.: Soliton-shape-preserving and soliton-complex interactions for a (1+1)-dimensional nonlinear dispersive-wave system in shallow water. Nonlinear Dyn. 66, 161-168 (2011) · Zbl 1392.35269 · doi:10.1007/s11071-010-9918-9
[35] Biswas, A., Milovic, D., Ranasinghe, A.: Solitary waves of Boussinesq equation in a power law media. Commun. Nonlinear Sci. Numer. Simul. 14, 3738-3742 (2009) · Zbl 1221.35311 · doi:10.1016/j.cnsns.2009.02.021
[36] Biswas, A.: Solitary waves for power-law regularized longwave equation and \[R(m, n)\] R(m,n) equation. Nonlinear Dyn. 59, 423-426 (2010) · Zbl 1183.76649 · doi:10.1007/s11071-009-9548-2
[37] Ablowitz, M.J., Segur, H.: On the evolution of packets of water waves. J. Fluid Mech. 92, 691-715 (1979) · Zbl 0413.76009 · doi:10.1017/S0022112079000835
[38] Ma, W.X., Xia, T.C.: Pfaffianized systems for a generalized Kadomtsev-Petviashvili equation. Phys. Scr. 87, 055003 (2013) · Zbl 1277.35306 · doi:10.1088/0031-8949/87/05/055003
[39] Ma, W.X., Zhu, Z.N.: Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm. Appl. Math. Comput. 218, 11871-11879 (2012) · Zbl 1280.35122 · doi:10.1016/j.amc.2012.05.049
[40] Kudryashov, N.A., Sinelshchikov, D.I.: Equation for the three-dimensional nonlinear waves in liquid with gas bubbles. Phys Scr. 85, 025402 (2012) · Zbl 1263.76073 · doi:10.1088/0031-8949/85/02/025402
[41] Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467-490 (1968) · Zbl 0162.41103 · doi:10.1002/cpa.3160210503
[42] Ma, W.X., Abdeljabbar, A.: A bilinear Bäcklund transformation of a (3+1)-dimensional generalized KP equation. Appl. Math. Lett. 25, 1500-1504 (2012) · Zbl 1248.37070 · doi:10.1016/j.aml.2012.01.003
[43] Bell, E.T.: Exponential polynomials. Ann. Math. 35, 258-277 (1834) · Zbl 0009.21202 · doi:10.2307/1968431
[44] Gilson, C., Lambert, F., Nimmo, J., Willox, R.: On the combinatorics of the Hirota \[D\] D-operators. Proc. R. Soc. Lond. A 452, 223-234 (1996) · Zbl 0868.35101 · doi:10.1098/rspa.1996.0013
[45] Lambert, F., Loris, I., Springael, J.: Classical Darboux transformations and the KP hierarchy. Inverse Probl. 17, 1067-1074 (2001) · Zbl 0986.35096 · doi:10.1088/0266-5611/17/4/333
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.