×

Fiber orientation distribution estimation using a Peaceman-Rachford splitting method. (English) Zbl 1346.92038

Summary: In diffusion-weighted magnetic resonance imaging, the estimation of the orientations of multiple nerve fibers in each voxel (the fiber orientation distribution (FOD)) is a critical issue for exploring the connection of cerebral tissue. In this paper, we establish a convex semidefinite programming (CSDP) model for the FOD estimation. One feature of the new model is that it can ensure the statistical meaning of FOD since as a probability density function, FOD must be nonnegative and have a unit mass. To construct such a statistically meaningful FOD, we consider its approximation by a sum of squares (SOS) polynomial and impose the unit-mass by a linear constraint. Another feature of the new model is that it introduces a new regularization based on the sparsity of nerve fibers. Due to the sparsity of the orientations of nerve fibers in cerebral white matter, a heuristic regularization is raised, which is inspired by the Z-eigenvalue of a symmetric tensor that closely relates to the SOS polynomial. To solve the CSDP efficiently, we propose a new Peaceman-Rachford splitting method and prove its global convergence. Numerical experiments on synthetic and real-world human brain data show that, when compared with some existing approaches for fiber estimations, the new method gives a sharp and smooth FOD. Further, the proposed Peaceman-Rachford splitting method is shown to have good numerical performances comparing several existing methods.

MSC:

92C55 Biomedical imaging and signal processing
65H17 Numerical solution of nonlinear eigenvalue and eigenvector problems
65K05 Numerical mathematical programming methods
90C22 Semidefinite programming
90C90 Applications of mathematical programming
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
Full Text: DOI

References:

[1] I. Aganj, C. Lenglet, G. Sapiro, E. Yacoub, K. Ugurbil, and N. Harel, {\it Reconstruction of the orientation distribution function in single- and multiple-shell Q-ball imaging within constant solid angle}, Magn. Reson. Med., 64 (2010), pp. 554-566.
[2] D. C. Alexander, {\it Maximum entropy spherical deconvolution for diffusion MRI}, Inf. Process. Med. Imaging, 3565 (2005), pp. 76-87.
[3] D. C. Alexander, G. J. Barker, and S. R. Arridge, {\it Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data}, Magn. Reson. Med., 48 (2002), pp. 331-340.
[4] A. Barmpoutis, J. Ho, and B. C. Vemuri, {\it Approximating symmetric positive semidefinite tensors of even order}, SIAM J. Imaging Sci., 5 (2012), pp. 434-464. · Zbl 1250.65056
[5] P. J. Basser, J. Mattiello, and D. LeBihan, {\it Estimation of the effective self-diffusion tensor from the NMR spin echo}, J. Magn. Reson., 103 (1994), pp. 247-254.
[6] T. E. J. Behrens, H. J. Berg, S. Jbabdi, M. F. S. Rushworth, and M. W. Woolrich, {\it Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?}, Neuroimage, 34 (2007), pp. 144-155.
[7] S. Boyd and L. Vandenberghe, {\it Convex Optimization}, Cambridge University Press, Cambridge, UK, 2004. · Zbl 1058.90049
[8] E. J. Canales-Rodríguez, C. Lin, Y. Iturria-Medina, C. Yeh, K. Cho, and L. Melie-García, {\it Diffusion orientation transform revisited}, Neuroimage, 49 (2010), pp. 1326-1339.
[9] E. J. Candés, J. Romberg, and T. Tao, {\it Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information}, IEEE Trans. Inform. Theory, 52 (2006), pp. 489-509. · Zbl 1231.94017
[10] E. J. Candés, J. K. Romberg, and T. Tao, {\it Stable signal recovery from incomplete and inaccurate measurements}, Comm. Pure Appl. Math., 59 (2006), pp. 1207-1223. · Zbl 1098.94009
[11] G. Casella and R. L. Berger, {\it Statistical Inference}, 2nd ed., Duxbury, Pacific Grove, CA, 2002. · Zbl 0699.62001
[12] Y. Chen, Y. Dai, D. Han, and W. Sun, {\it Positive semidefinite generalized diffusion tensor imaging via quadratic semidefinite programming}, SIAM J. Imaging Sci., 6 (2013), pp. 1531-1552. · Zbl 1283.65057
[13] J. Cheng, R. Deriche, T. Jiang, D. Shen, and P. T. Yap, {\it Non-negative spherical deconvolution (NNSD) for estimation of fiber orientation distribution function in single-/multi-shell diffusion MRI}, Neuroimage, 101 (2014), pp. 750-764.
[14] O. Ciccarelli, M. Catani, H. Johansen-Berg, C. Clark, and A. Thompson, {\it Diffusion-based tractography in neurological disorders: Concepts, applications, and future developments}, LANCET Neurol., 7 (2008), pp. 715-727.
[15] C. Cui, Y. Dai, and J. Nie, {\it All real eigenvalues of symmetric tensors}, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 1582-1601. · Zbl 1312.65053
[16] F. Dell’Acqua, G. Rizzo, P. Scifo, R. A. Clarke, G. Scotti, and F. Fazio, {\it A model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging}, IEEE Trans. Biomed. Eng., 54 (2007), pp. 462-472.
[17] F. Dell’Acqua, P. Scifo, G. Rizzo, M. Catani, A. Simmons, G. Scotti, and F. Fazio, {\it A modified damped Richardson-Lucy algorithm to reduce isotropic background effects in spherical deconvolution}, Neuroimage, 49 (2010), pp. 1446-1458.
[18] M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche, {\it Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications}, Magn. Reson. Med., 56 (2006), pp. 395-410.
[19] M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche, {\it Regularized, fast, and robust analytical Q-ball imaging}, Magn. Reson. Med., 58 (2007), pp. 497-510.
[20] M. Descoteaux, R. Deriche, T. R. Knösche, and A. Anwander, {\it Deterministic and probabilistic tractography based on complex fibre orientation distributions}, IEEE Trans. Med. Imaging, 28 (2009), pp. 269-286.
[21] D. L. Donoho, {\it For most large underdetermined systems of linear equations the minimal \(ℓ_1\)-norm solution is also the sparsest solution}, Comm. Pure Appl. Math., 59 (2006), pp. 797-829. · Zbl 1113.15004
[22] J. Douglas and H. H. Rachford, {\it On the numerical solution of heat conduction problems in two and three space variables}, Trans. Amer. Math. Soc., 82 (1956), pp. 421-439. · Zbl 0070.35401
[23] D. Gabay, {\it Applications of the method of multipliers to variational inequalities}, in Augmented Lagrange Methods: Applications to the Solution of Boundary-Valued Problems, M. Fortin and R. Glowinski, eds., North-Holland, Amsterdam, 1983, pp. 59-82.
[24] R. Glowinski, {\it On alternating direction methods of multipliers: A historical perspective}, in Modeling, Simulation and Optimization for Science and Technology, William Fitzgibbon, Yuri A. Kuznetsov, Pekka Neittaanmäki, and Olivier Pironneau, eds., Comput. Methods Appl. Sci. 34, Springer, Dordrecht, Netherlands, 2014, pp. 59-82. · Zbl 1320.65098
[25] R. Glowinski and A. Marroco, {\it Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problémes de Dirichlet non linéaires}, Revue Française d’Automatique, Informatique, Recherche Opérationnelle, Analyse numérique, 9 (1975), pp. 41-76. · Zbl 0368.65053
[26] A. Goh, C. Lenglet, P. M. Thompson, and R. Vidal, {\it Estimating orientation distribution functions with probability density constraints and spatial regularity}, in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2009, Lecture Notes in Comput. Sci. 5761, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 877-885.
[27] D. Han, L. Qi, and Ed X. Wu, {\it Extreme diffusion values for non-Gaussian diffusions}, Optim. Methods Softw., 23 (2008), pp. 703-716. · Zbl 1154.60342
[28] B. He, H. Liu, Z. Wang, and X. Yuan, {\it A strictly contractive Peaceman-Rachford splitting method for convex programming}, SIAM J. Optim., 24 (2014), pp. 1011-1040. · Zbl 1327.90210
[29] B. He, M. Tao, and X. Yuan, {\it Alternating direction method with Gaussian back substitution for separable convex programming}, SIAM J. Optim., 22 (2012), pp. 313-340. · Zbl 1273.90152
[30] R. A. Horn and C. R. Johnson, {\it Topics in Matrix Analysis}, Cambridge University Press, Cambridge, UK, 1991. · Zbl 0729.15001
[31] S. Hu, Z. Huang, H. Ni, and L Qi, {\it Positive definiteness of diffusion kurtosis imaging}, Inverse Probl. Imaging, 6 (2012), pp. 57-75. · Zbl 1242.90164
[32] J. H. Jensen, J. A. Helpern, A. Ramani, H. Lu, and K. Kaczynski, {\it Diffusional kurtosis imaging: The quantification of non-Gaussian water diffusion by means of magnetic resonance imaging}, Magn. Reson. Med., 53 (2005), pp. 1432-1440.
[33] B. Jian and B. C. Vemuri, {\it A unified computational framework for deconvolution to reconstruct multiple fibers from diffusion weighted MRI}, IEEE Trans. Med. Imaging, 26 (2007), pp. 1464-1471.
[34] B. Jian, B. C. Vemuri, E. Özarslan, P. R. Carney, and T. H. Mareci, {\it A novel tensor distribution model for the diffusion-weighted MR signal}, NeuroIimage, 37 (2007), pp. 164-176.
[35] H. Johansen-Berg and M. F. S. Rushworth, {\it Using diffusion imaging to study human connectional anatomy}, Annu. Rev. Neurosci., 32 (2009), pp. 75-94.
[36] E. Kaden, T. R. Knösche, and A. Anwander, {\it Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging}, Neuroimage, 37 (2007), pp. 474-488.
[37] J. B. Lasserre, {\it A sum of squares approximation of nonnegative polynomials}, SIAM J. Optim., 16 (2006), pp. 751-765. · Zbl 1129.12003
[38] V. I. Lebedev and D. N. Laikov, {\it A quadrature formula for the sphere of the \(131\) st algebraic order of accuracy}, Dokl. Math., 59 (1999), pp. 477-481. · Zbl 0960.65029
[39] C. Lin, W. I. Tseng, H. Cheng, and J. Chen, {\it Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts}, Neuroimage, 14 (2001), pp. 1035-1047.
[40] R. Neji, N. Azzabou, N. Paragios, and G. Fleury, {\it A convex semi-definite positive framework for DTI estimation and regularization}, in Advances in Visual Computing, Lecture Notes in Comput. Sci. 4841, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 220-229.
[41] J. Nocedal and S. J. Wright, {\it Numerical Optimization}, 2nd ed., Springer Ser. Oper. Res. Financ. Eng. Springer, New York, 2006. · Zbl 1104.65059
[42] Y. Ouyang, Y. Chen, Y. Wu, and H. Zhou, {\it Total variation and wavelet regularization of orientation distribution functions in diffusion MRI}, Inverse Probl. Imaging, 7 (2013), pp. 565-583. · Zbl 1336.92046
[43] P. A. Parrilo, {\it Semidefinite programming relaxations for semialgebraic problems}, Math. Program., 96 (2003), pp. 293-320. · Zbl 1043.14018
[44] V. Patel, Y. Shi, P. M. Thompson, and A. W. Toga, {\it Mesh-based spherical deconvolution: A flexible approach to reconstruction of non-negative fiber orientation distributions}, Neuroimage, 51 (2010), pp. 1071-1081.
[45] D. W. Peaceman and H. H. Rachford, Jr., {\it The numerical solution of parabolic and elliptic differential equations}, J. Soc. Ind. Appl. Math., 3 (1955), pp. 28-41. · Zbl 0067.35801
[46] L. Qi, {\it Eigenvalues of a real supersymmetric tensor}, J. Symbolic Comput., 40 (2005), pp. 1302-1324. · Zbl 1125.15014
[47] L. Qi, D. Han, and Ed X. Wu, {\it Principal invariants and inherent parameters of diffusion kurtosis tensors}, J. Math. Anal. Appl., 349 (2009), pp. 165-180. · Zbl 1158.15029
[48] L. Qi, Y. Wang, and Ed X. Wu, {\it D-eigenvalues of diffusion kurtosis tensors}, J. Comput. Appl. Math., 221 (2008), pp. 150-157. · Zbl 1176.65046
[49] L. Qi, G. Yu, and Y. Xu, {\it Nonnegative diffusion orientation distribution function}, J. Math. Imaging Vis., 45 (2013), pp. 103-113. · Zbl 1276.94004
[50] A. Ramirez-Manzanares, M. Rivera, B. C. Vemuri, P. Carney, and T. Mareci, {\it Diffusion basis functions decomposition for estimating white matter intravoxel fiber geometry}, IEEE Trans. Med. Imaging, 26 (2007), pp. 1091-1102.
[51] E. Schwab, B. Afsari, and R. Vidal, {\it Estimation of non-negative ODFs using the eigenvalue distribution of spherical functions}, in Medical Image Computing and Computer-Assisted Intervention-MICCAI 2012, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 322-330.
[52] J. D. Tournier, F. Calamante, and A. Connelly, {\it Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution}, Neuroimage, 35 (2007), pp. 1459-1472.
[53] J. D. Tournier, F. Calamante, D. G. Gadian, and A. Connelly, {\it Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution}, Neuroimage, 23 (2004), pp. 1176-1185.
[54] A. Tristän-Vega, C. F. Westin, and S. Aja-Fernández, {\it Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging}, Neuroimage, 47 (2009), pp. 638-650.
[55] A. Tristán-Vega, C. F. Westin, and S. Aja-Fernández, {\it A new methodology for the estimation of fiber populations in the white matter of the brain with the Funk-Radon transform}, Neuroimage, 49 (2010), pp. 1301-1315.
[56] D. S. Tuch, {\it Q-ball imaging}, Magn. Reson. Med., 52 (2004), pp. 1358-1372.
[57] D. S. Tuch, T. G. Reese, M. R. Wiegell, N. Makris, J. W. Belliveau, and V. J. Wedeen, {\it High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity}, Magn. Reson. Med., 48 (2002), pp. 577-582.
[58] V. J. Wedeen, P. Hagmann, W. I. Tseng, T. G. Reese, and R. M. Weisskoff, {\it Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging}, Magn. Reson. Med., 54 (2005), pp. 1377-1386.
[59] Y. T. Weldeselassie, A. Barmpoutis, and M. S. Atkins, {\it Symmetric positive semi-definite cartesian tensor fiber orientation distributions (CT-FOD)}, Med. Image Anal., 16 (2012), pp. 1121-1129.
[60] S. Wolfers, E. Schwab, and R. Vidal, {\it Nonnegative ODF estimation via optimal constraint selection}, in 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), IEEE, Piscataway, NJ, 2014, pp. 734-737.
[61] C. Ye and X. Yuan, {\it A descent method for structured monotone variational inequalities}, Optim. Methods Softw., 22 (2007), pp. 329-338. · Zbl 1196.90118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.