×

A tutorial on interaction. (English) Zbl 1343.92023

Summary: In this tutorial, we provide a broad introduction to the topic of interaction between the effects of exposures. We discuss interaction on both additive and multiplicative scales using risks, and we discuss their relation to statistical models (e.g. linear, log-linear, and logistic models). We discuss and evaluate arguments that have been made for using additive or multiplicative scales to assess interaction. We further discuss approaches to presenting interaction analyses, different mechanistic forms of interaction, when interaction is robust to unmeasured confounding, interaction for continuous outcomes, qualitative or “crossover” interactions, methods for attributing effects to interactions, case-only estimators of interaction, and power and sample size calculations for additive and multiplicative interaction.

MSC:

92B15 General biostatistics
62P10 Applications of statistics to biology and medical sciences; meta analysis
62N05 Reliability and life testing
Full Text: DOI

References:

[1] Ai, C.; Norton,, E. C., Interaction terms in logit and probit models, Economics Letters, 80, 123-129 (2003); · Zbl 0711.94015 · doi:10.1016/S0165-1765(03)00032-6
[2] Albert, P. S.; Ratnasinghe, D.; Tangrea, J.; Wacholder, S., Limitations of the case-only design for identifying gene-environment interactions, American Journal of Epidemiology, 154, 687-693 (2001); · doi:10.1093/aje/154.8.687
[3] Almirall, D.; Ten Have, T.; Murphy, S. A., Structural nested mean models for assessing time-varying effect moderation, Biometrics, 66, 131-139 (2010); · Zbl 1187.62163 · doi:10.1111/j.1541-0420.2009.01238.x
[4] Andersson, T.; Alfredsson, L.; Kallberg, H.; Zdravkovic, S.; Ahlbom, A., Calculating measures of biological interaction, European Journal of Epidemiology, 20, 575-579 (2005); · doi:10.1007/s10654-005-7835-x
[5] Assmann, S. F.; Hosmer, D. W.; Lemeshow, S.; Mundt, K. A., Confidence intervals for measures of interaction, Epidemiology, 7, 286-290 (1996); · doi:10.1097/00001648-199605000-00012
[6] Bennett, W. P.; Alavanja, M. C. R.; Blomeke, B.; Vähäkangas, K. H.; Castrén, K.; Welsh, J. A.; Bowman, E. D.; Khan, M. A.; Flieder, D. B.; Harris, C. C., Environmental tobacco smoke, genetic susceptibility, and risk of lung cancer in never-smoking women, Journal of the National Cancer Institute, 91, 2009-2014 (1999); · doi:10.1093/jnci/91.23.2009
[7] Bhavnani, D.; Goldstick, J. E.; Cevallos, W.; Trueba, G.; Eisenberg, J. N. S., Synergistic effects between rotavirus and coinfecting pathogens on diarrheal disease: Evidence from a community-based study in northwestern Ecuador, American Journal of Epidemiology, 176, 387-395 (2012); · doi:10.1093/aje/kws220
[8] Blot, W. J.; Day, N. E., Synergism and interaction: Are they equivalent?, American Journal of Epidemiology, 110, 99-100 (1979);
[9] Bonetti, M.; Gelber, R. D., A graphical method to assess treatment-covariate interactions using the cox model on subsets of the data, Statistics in Medicine, 19, 2595-2609 (2000); · doi:10.1002/1097-0258(20001015)19:19<2595::AID-SIM562>3.0.CO;2-M
[10] Bonetti, M.; Gelber, R. D., Patterns of treatment effects in subsets of patients in clinical trials, Biostatistics, 5, 465-481 (2005); · Zbl 1154.62384
[11] Botto, L. D.; Khoury, M. J., Facing the challenge of gene-environment interaction: the two-by-four table and beyond, American Journal of Epidemiology, 153, 1016-1020 (2001); · doi:10.1093/aje/153.10.1016
[12] Cai, T.; Tian, L.; Wong, P. H.; Wei, L. J., Analysis of randomized comparative clinical trial data for personalized treatment selections, Biostatistics, 12, 270-282 (2011); · Zbl 1437.62406 · doi:10.1093/biostatistics/kxq060
[13] Chatterjee, N.; Carroll, R. J., Semiparametric maximum likelihood estimation exploiting gene-environment independence in case-control studies, Biometrika, 92, 399-418 (2005); · Zbl 1094.62136 · doi:10.1093/biomet/92.2.399
[14] Chatterjee, N.; Kalaylioglu, Z.; Moleshi, R.; Peters, U.; Wacholder, S., Powerful multilocus tests of genetic association in the presence of gene-gene and gene-environment interactions, American Journal of Human Genetics, 79, 1002-1016 (2006); · doi:10.1086/509704
[15] Cheng, K. F.; Lin, W. J., The effects of misclassification in studies of gene-environment interactions, Human Heredity, 67, 77-87 (2009); · doi:10.1159/000179556
[16] Chu, H.; Nie, L.; Cole, S. R., Estimating the relative excess risk due to interaction: A Bayesian approach, Epidemiology, 22, 242-248 (2011); · doi:10.1097/EDE.0b013e318208750e
[17] Cordell, H. J., Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans, Human Molecular Genetics, 11, 2463-2468 (2002); · doi:10.1093/hmg/11.20.2463
[18] Cordell, H. J., Detecting gene-gene interaction that underlie human diseases, Nature Reviews Genetics, 10, 392-404 (2009); · doi:10.1038/nrg2579
[19] Cornfield, J.; Haenszel, W.; Hammond, E. C.; Lilienfeld, A. M.; Shimkin, M. B.; Wynder, L. L., Smoking and lung cancer: Recent evidence and a discussion of some questions, Journal of the National Cancer Institute, 22, 173-203 (1959);
[20] Dai, J.; Logsdon, B.; Huang, Y., Simultaneous testing for marginal genetic association and gene-environment interaction in genome-wide association studies, American Journal of Epidemiology, 176, 164-173 (2012); · doi:10.1093/aje/kwr521
[21] de González, A. B.; Cox, D. R., Interpretation of interaction: A review, Annals of Applied Statistics, 1, 371-385 (2007); · Zbl 1416.62314 · doi:10.1214/07-AOAS124
[22] Deeks, J. J.; Altman, D. G.; Egger, M.; Davey Smith, G.; Altman, D. G., Systematic Reviews in Health Care: Meta-Analysis in Context, 313-335 (2003);
[23] Demidenko, E., Sample size and optimal design for logistic regression with binary interaction, Statistics in Medicine, 27, 36-46 (2008); · doi:10.1002/sim.2980
[24] Engels, E. A.; Schmid, C. H.; Terrin, N., Heterogeneity and statistical significance in meta-analysis: An empirical study of 125 meta-analyses, Statistics in Medicine, 19, 1707-1728 (2000); · doi:10.1002/1097-0258(20000715)19:13<1707::AID-SIM491>3.0.CO;2-P
[25] Figueiredo, J. C.; Knight, J. A.; Briollais, L.; Andrulis, I. L.; Ozcelik, H., Polymorphisms XRCC1-R399Q and XRCC3-T241M and the risk of breast cancer at the Ontario Site of the Breast Cancer Family Registry, Cancer Epidemiology, Biomarkers and Prevention, 13, 583-591 (2004);
[26] Foppa, I.; Spiegelman, D., Power and sample size calculations for case-control studies of gene-environment interactions with a polytomous exposure variable, American Journal of Epidemiology, 146, 596-604 (1997); · doi:10.1093/oxfordjournals.aje.a009320
[27] Gail, M.; Simon, R., Testing for qualitative interactions between treatment effects and patient subsets, Biometrics, 41, 361-372 (1985); · Zbl 0614.62140 · doi:10.2307/2530862
[28] Garcia-Closas, M.; Lubin, J. H., Power and sample size calculations in case-control studies of gene-environment interactions: Comments on different approaches, American Journal of Epidemiology, 149, 689-692 (1999); · doi:10.1093/oxfordjournals.aje.a009876
[29] Garcia-Closas, M.; Thompson, W. D.; Robins, J. M., Differential misclassification and the assessment of gene-environment interactions, American Journal of Epidemiology, 147, 426-433 (1998); · doi:10.1093/oxfordjournals.aje.a009467
[30] Gauderman, W. J., Sample size requirements for association studies of gene-gene interaction, American Journal of Epidemiology, 155, 478-484 (2002); · doi:10.1093/aje/155.5.478
[31] Gauderman, W. J., Sample size requirements for matched case-control studies of gene-environment interaction, Statistics in Medicine, 21, 35-50 (2002); · doi:10.1002/sim.973
[32] Gayan, J., A method for detecting epistasis in genome-wide studies using case-control multi-locus association analysis, BMC Genomics, 9, 360 (2008); · doi:10.1186/1471-2164-9-360
[33] Greenland, S., Tests for interaction in epidemiologic studies: A review and study of power, Statistics in Medicine, 2, 243-251 (1983); · doi:10.1002/sim.4780020219
[34] Greenland, S., Interactions in epidemiology: relevance, identification and estimation, Epidemiology, 20, 14-17 (2009); · doi:10.1097/EDE.0b013e318193e7b5
[35] Greenland, S.; Lash, T. L.; Rothman, K. J.; Rothman, K. J.; Greenland, S.; Lash, T. L., Modern Epidemiology (2008);
[36] Han, S. S.; Rosenberg, P. S.; Garcia-Closas, M.; Figueroa, J. D.; Silverman, D.; Chanock, S. J.; Rothman, N.; Chatterjee, N., Likelihood ratio test for detecting gene (G)-environment (E) interactions under an additive risk model exploiting G-E independence for case-control data, American Journal of Epidemiology, 176, 1060-1067 (2012); · doi:10.1093/aje/kws166
[37] Hill, A. B., The environment and disease: Association or causation?, Proceedings of the Royal Society of Medicine, 58, 295-300 (1965);
[38] Hilt, B.; Langård, S.; Lund-Larsen, P. G.; Lien, J. T., Previous asbestos exposure and smoking habits in the county of Telemark, Norway - A cross-sectional population study, Scandinavian Journal of Work, Environment and Health, 12, 561-566 (1986); · doi:10.5271/sjweh.2106
[39] Hoffmann, T. J.; Lange, C.; Vansteelandt, S.; Laird, N. M., Gene-environment interaction tests for dichotomous traits in trios and sibships, Genetic Epidemiology, 33, 691-699 (2009); · doi:10.1002/gepi.20421
[40] Hosmer, D. W.; Lemeshow, S., Confidence interval estimation of interaction, Epidemiology, 3, 452-456 (1992); · doi:10.1097/00001648-199209000-00012
[41] Hwang, S.-J.; Beaty, T. H.; Liang, K.-Y.; Coresh, J.; Khoury, M. J., Minimum sample size estimation to detect gene-environment interaction in case-control designs, American Journal of Epidemiology, 140, 1029-1037 (1994);
[42] Khoury, M. J.; Wacholder, S., From Genome-wide association studies to gene-environment-wide interaction studies - Challenges and opportunities, American Journal of Epidemiology, 169, 227-230 (2009);
[43] Knol, M. J.; Egger, M.; Scott, P.; Geerlings, M. I.; Vandenbroucke, J. P., When one depends on the other: Reporting of interaction in case-control and cohort studies, Epidemiology, 2009, 20, 161-166 (2009); · doi:10.1097/EDE.0b013e31818f6651
[44] Knol, M. J.; Vandenbroucke, J. P.; Scott, P.; Egger, M., What do case-control studies estimate? Survey of methods and assumptions in published case-control research, American Journal of Epidemiology, 168, 1073-1081 (2008); · doi:10.1093/aje/kwn217
[45] Knol, M. J.; VanderWeele, T. J., Guidelines for presenting analyses of effect modification and interaction, International Journal of Epidemiology, 41, 514-520 (2012); · doi:10.1093/ije/dyr218
[46] Knol, M. J.; VanderWeele, T. J.; Groenwold, R. H. H.; Klungel, O. H.; Rovers, M. M.; Grobbee, D. E., Estimating measures of interaction on an additive scale for preventive exposures, European Journal of Epidemiology, 26, 433-438 (2011); · doi:10.1007/s10654-011-9554-9
[47] Knol, M. J.; le Cessie, S.; Algra, A.; Vandenbroucke, J. P.; Groenwold, R. H. H., Overestimation of risk ratios by odds ratios in trials and cohort studies: Alternatives to logistic regression, Canadian Medical Association Journal, 184, 895-899 (2012); · doi:10.1503/cmaj.101715
[48] Knol, M. J.; van der Tweel, I.; Grobbee, D. E.; Numans, M. E.; Geerlings, M. I., Estimating interaction on an additive scale between continuous determinants in a logistic regression model, International Journal of Epidemiology, 36, 1111-1118 (2007); · doi:10.1093/ije/dym157
[49] Kraft, P., Multiple comparisons in studies of gene x gene and gene x environment interaction, American Journal of Human Genetics, 74, 582-585 (2004); · doi:10.1086/382051
[50] Kraft, P.; Yen, Y. C.; Stram, D. O.; Morrison, J.; Gauderman, W. J., Exploiting gene-environment interaction to detect disease susceptibility loci, Human Heredity, 63, 111-119 (2007); · doi:10.1159/000099183
[51] Kuss, O.; Schmidt-Pokrzywniak, A.; Stang, A., Confidence intervals for the interaction contrast ratio, Epidemiology, 21, 273-274 (2010); · doi:10.1097/EDE.0b013e3181cc9bfc
[52] Kuyvenhoven, J. P.; Veenendaal, R. A.; Vandenbroucke, J. P., Peptic ulcer bleeding: Interaction between non-steroidal anti-inflammatory drugs, Helicobacter pylori infection, and the ABO blood group system, Scandinavian Journal of Gastroenterol, 34, 1082-1086 (1999); · doi:10.1080/003655299750024869
[53] Lake, S.; Laird, N., Tests of gene-environment interaction for case-parent triads with general environmental exposures, Annals of Human Genetics, 68, 55-64 (2004); · doi:10.1046/j.1529-8817.2003.00073.x
[54] Lawlor, D. A., Biological interaction: Time to drop the term?, Epidemiology, 22, 148-150 (2011); · doi:10.1097/EDE.0b013e3182093298
[55] Li, Y., Genetic variants and risk of lung cancer in never smokers: A genome-wide association study, Lancet Oncology, 11, 321-330 (2010); · doi:10.1016/S1470-2045(10)70042-5
[56] Li, R.; Chambless, L., Test for additive interaction in proportional hazards models, Annals of Epidemiology, 17, 227-236 (2007); · doi:10.1016/j.annepidem.2006.10.009
[57] Li, J.; Chan, I. S., Detecting qualitative interactions in clinical trials: An extension of range test, Journal of Biopharmaceutical Statistics, 16, 831-841 (2006); · doi:10.1080/10543400600801588
[58] Lindström, S.; Yen, Y.-C.; Spiegelman, D.; Kraft, P., The impact of gene-environment dependence and misclassification in genetic association studies incorporating gene-environment interactions, Human Heredity, 68, 171-181 (2009); · doi:10.1159/000224637
[59] Lundberg, M.; Fredlund, P.; Hallqvist, J.; Diderichsen, F., A SAS program calculating three measures of interaction with confidence intervals, Epidemiology, 7, 655-656 (1996);
[60] Maity, A.; Carroll, R. J.; Mammen, E.; Chatterjee, N., Testing in semiparametric models with interaction, with applications to gene-environment interactions, Journal of the Royal Statistical Society, Series B, 71, 75-96 (2009); · Zbl 05691132 · doi:10.1111/j.1467-9868.2008.00671.x
[61] Miller, D. P.; Liu, G.; De Vivo, I., Combinations of the variant genotypes of GSTP1, GSTM1, and p53 are associated with an increased lung cancer risk, Cancer research, 62, 2819-2823 (2002);
[62] Mukherjee, B.; Chatterjee, N., Exploiting gene-environment independence for analysis of case-control studies: An empirical-Bayes type shrinkage estimator to trade off between bias and efficiency, Biometrics, 64, 685-694 (2008); · Zbl 1190.62185 · doi:10.1111/j.1541-0420.2007.00953.x
[63] Mukherjee, B.; Zhang, L.; Ghosh, M.; Sinha, S., Semiparametric Bayesian analysis of case-control data under conditional gene-environment independence, Biometrics, 63, 834-844 (2007); · Zbl 1146.62095 · doi:10.1111/j.1541-0420.2007.00750.x
[64] Murcray, C. E.; Lewinger, J. P.; Gauderman, W. J., Gene-environment interaction in genome-wide association studies, American Journal of Epidemiology, 169, 219-226 (2009);
[65] Nie, L.; Chu, H.; Li, F.; Cole, S. R., Relative excess risk due to interaction: resampling-based confidence intervals, Epidemiology, 21, 552-556 (2010); · doi:10.1097/EDE.0b013e3181e09b0b
[66] Norton, E. C.; Wang, H.; Ai, C., Computing interaction effects and standard errors in logit and probit models, Stata Journal, 4, 154-167 (2004);
[67] Pan, G.; Wolfe, D. A., Test for qualitative interaction of clinical significance, Statistics in Medicine, 16, 1645-1652 (1997); · doi:10.1002/(SICI)1097-0258(19970730)16:14<1645::AID-SIM596>3.0.CO;2-G
[68] Petersen, M. L.; Deeks, S. G.; Martin, J. N.; van der Laan, M. J., History-adjusted marginal structural models for estimating time-varying effect modification, American Journal of Epidemiology, 166, 985-993 (2007); · doi:10.1093/aje/kwm232
[69] Peto, R.; Halnan, K. E., Treatment of Cancer, 867-871 (1982);
[70] Phillips, P. C., Epistasis - The essential role of gene interactions in the structure and evolution of genetic systems, Nature Reviews Genetic, 9, 855-867 (2008); · doi:10.1038/nrg2452
[71] Piantadosi, S.; Gail, M. H., A comparison of the power of two tests for qualitative interactions, Statistics in Medicine, 12, 1239-1248 (1993); · doi:10.1002/sim.4780121305
[72] Piegorsch, W. W.; Weinberg, C. R.; Taylor, J. A., Non-hierarchical logistic models and case-only designs for assessing susceptibility in population-based case-control studies, Statistics in Medicine, 13, 153-162 (1994); · doi:10.1002/sim.4780130206
[73] Pierce, B. L.; Ahsan, H., Case-only genome-wide interaction study of disease risk, prognosis and treatment, Genetic Epidemiology, 34, 7-15 (2010);
[74] Poole, C., On the origin of risk relativism, Epidemiology, 21, 3-9 (2010); · doi:10.1097/EDE.0b013e3181c30eba
[75] Richardson, D. B.; Kaufman, J. S., Estimation of the relative excess risk due to interaction and associated confidence bounds, American Journal of Epidemiology, 169, 756-760 (2009); · doi:10.1093/aje/kwn411
[76] Robins, J. M.; Hernán, M. A.; Brumback, B., Marginal structural models and causal inference in epidemiology, Epidemiology, 11, 550-560 (2000); · doi:10.1097/00001648-200009000-00011
[77] Robins, J. M.; Hernán, M. A.; Rotnitzky, A., Effect modification by time-varying covariates, American Journal of Epidemiology, 166, 994-1002 (2007); · doi:10.1093/aje/kwm231
[78] Rod, N. H.; Lange, T.; Andersen, I.; Marott, J. L.; Diderichsen, F., Additive interaction in survival analysis: use of the additive hazards model, Epidemiology, 23, 733-737 (2012); · doi:10.1097/EDE.0b013e31825fa218
[79] Rothman, K. J., Causes, American Journal of Epidemiology, 104, 587-592 (1976);
[80] Rothman, K. J., Modern Epidemiology (1986);
[81] Rothman, K. J.; Greenland, S.; Walker, A. M., Concepts of interaction, American Journal of Epidemiology, 112, 467-470 (1980);
[82] Rothman, K. J.; Greenland, S., Modern epidemiology (1998);
[83] Saracci, R., Interaction and synergism, American Journal of Epidemiology, 112, 465-466 (1980);
[84] Siemiatycki, J.; Thomas, D. C., Biological models and statistical interactions: An example from multistage carcinogenesis, International Journal of Epidemiology, 10, 383-387 (1981); · doi:10.1093/ije/10.4.383
[85] Silvapulle, M. J., Tests against qualitative interaction: Exact critical values and robust tests, Biometrics, 57, 1157-1165 (2001); · Zbl 1209.62018 · doi:10.1111/j.0006-341X.2001.01157.x
[86] Skrondal, A., Interaction as departure from additivity in case-control studies: A cautionary note, American Journal of Epidemiology, 158, 3, 251-258 (2003); · doi:10.1093/aje/kwg113
[87] Song, X.; Pepe, M. S., Evaluating markers for selecting a patient’s treatment, Biometrics, 60, 874-883 (2004); · Zbl 1274.62877 · doi:10.1111/j.0006-341X.2004.00242.x
[88] Sterne, J. A.; Egger, M., Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis, Journal of Clinical Epidemiology, 54, 1046-1055 (2001); · doi:10.1016/S0895-4356(01)00377-8
[89] Szklo, M.; Nieto, F. J., Epidemiology: Beyond the Basics (2007);
[90] Tchetgen Tchetgen, E. J., On the interpretation, robustness, and power of varieties of case-only tests of gene-environment interaction, American Journal of Epidemiology, 172, 1335-1338 (2010); · doi:10.1093/aje/kwq359
[91] Tchetgen Tchetgen, E. J.; Kraft, P., On the robustness of tests of genetic associations incorporating gene-environment interaction when the environmental exposure is misspecified, Epidemiology, 22, 257-261 (2011); · doi:10.1097/EDE.0b013e31820877c5
[92] Tchetgen Tchetgen, E. J.; Robins, J. M., The semi-parametric case-only estimator, Biometrics, 66, 1138-1144 (2010); · Zbl 1233.62189 · doi:10.1111/j.1541-0420.2010.01401.x
[93] Tchetgen Tchetgen, E. J. and VanderWeele, T. J (2012). Robustness of measures of interaction to unmeasured confounding. Harvard University, Technical Report.;
[94] Thomas, D., Gene-environment-wide association studies: Emerging approaches, Nature Reviews Genetics, 11, 259-272 (2010); · doi:10.1038/nrg2764
[95] Thompson, W. D., Effect modification and the limits of biologic inference from epidemiologic data, Journal of Clinical Epidemiology, 44, 221-232 (1991); · doi:10.1016/0895-4356(91)90033-6
[96] Umbach, D.; Weinberg, C., The use of case-parent triads to study joint effects of genotype and exposure, American Journal of Human Genetics, 66, 251-261 (2000); · doi:10.1086/302707
[97] Vandenbroucke, J. P.; Koster, T.; Briët, E.; Reitsma, P. H.; Bertina, R. M.; Rosendaal, F. R., Increased risk of venous thrombosis in oral-contraceptive users who are carriers of factor V Leiden mutation, Lancet, 344, 1453-1457 (1994); · doi:10.1016/S0140-6736(94)90286-0
[98] Vandenbroucke, J. P.; von Elm, E.; Altman, D. G., Strengthening the reporting of observational studies in epidemiology (STROBE): Explanation and elaboration, Epidemiology, 18, 805-835 (2007); · doi:10.1097/EDE.0b013e3181577511
[99] VanderWeele, T. J., On the distinction between interaction and effect modification, Epidemiology, 20, 863-871 (2009); · doi:10.1097/EDE.0b013e3181ba333c
[100] VanderWeele, T. J., Sufficient cause interactions and statistical interactions, Epidemiology, 20, 6-13 (2009); · doi:10.1097/EDE.0b013e31818f69e7
[101] VanderWeele, T. J., Empirical tests for compositional epistasis, Nature Reviews Genetics, 11, 166 (2010); · doi:10.1038/nrg2579-c1
[102] VanderWeele, T. J., Epistatic interactions, Statistical Applications in Genetics and Molecular Biology, 9, 1-22 (2010);
[103] VanderWeele, T. J., Response to “On the definition of effect modification,” by E. Shahar and D.J. Shahar, Epidemiology, 21, 587-588 (2010); · doi:10.1097/EDE.0b013e3181e0f545
[104] VanderWeele, T. J., Sufficient cause interactions for categorical and ordinal exposures with three levels, Biometrika, 97, 647-659 (2010); · Zbl 1195.62165 · doi:10.1093/biomet/asq030
[105] VanderWeele, T. J., A word and that to which it once referred: assessing “biologic” interaction, Epidemiology, 22, 612-613 (2011); · doi:10.1097/EDE.0b013e31821db393
[106] VanderWeele, T. J., Causal interactions in the proportional hazards model, Epidemiology, 22, 713-717 (2011); · doi:10.1097/EDE.0b013e31821db503
[107] VanderWeele, T. J., Sample size and power calculations for case-only interaction studies: Formulas for common test statistics, Epidemiology, 22, 873-874 (2011); · doi:10.1097/EDE.0b013e31822e18e5
[108] VanderWeele, T. J., Sample size and power calculations for additive interactions, Epidemiologic Methods, 1, 159-188 (2012); · Zbl 1277.62267
[109] VanderWeele, T. J., Interaction tests under exposure misclassification, Biometrika, 99, 502-508 (2012); · Zbl 1239.62139 · doi:10.1093/biomet/ass012
[110] VanderWeele, T. J., Reconsidering the denominator of the attributable proportion for additive interaction, European Journal of Epidemiology, 28, 779-784 (2013); · doi:10.1007/s10654-013-9843-6
[111] VanderWeele, T. J (2014a). A unification of mediation and interaction: A four-way decomposition. Epidemiology, in press.;
[112] VanderWeele, T. J. (2014b). Explanation in Causal Inference: Methods for Mediation and Interaction. Oxford University Press, in press.;
[113] VanderWeele, T. J.; Knol, M. J., The interpretation of subgroup analyses in randomized trials: Heterogeneity versus secondary interventions, Annals of Internal Medicine, 154, 680-683 (2011); · doi:10.7326/0003-4819-154-10-201105170-00008
[114] VanderWeele, T. J.; Knol, M. J., Remarks on antagonism, American Journal of Epidemiology, 173, 1140-1147 (2011); · doi:10.1093/aje/kwr009
[115] VanderWeele, T. J.; Mukherjee, B.; Chen, J., Sensitivity analysis for interactions under unmeasured confounding, Statistics in Medicine, 31, 2552-2564 (2012); · doi:10.1002/sim.4354
[116] VanderWeele, T. J.; Richardson, T. S., General theory for interactions in sufficient cause models with dichotomous exposures, Annals of Statistics, 40, 2128-2161 (2012); · Zbl 1257.62006 · doi:10.1214/12-AOS1019
[117] VanderWeele, T. J.; Robins, J. M., The identification of synergism in the SCC framework, Epidemiology, 18, 329-339 (2007); · doi:10.1097/01.ede.0000260218.66432.88
[118] VanderWeele, T. J.; Robins, J. M., Four types of effect modification - A classification based on directed acyclic graphs, Epidemiology, 18, 561-568 (2007); · doi:10.1097/EDE.0b013e318127181b
[119] VanderWeele, T. J.; Robins, J. M., Empirical and counterfactual conditions for sufficient cause interactions, Biometrika, 95, 49-61 (2008); · Zbl 1437.62636 · doi:10.1093/biomet/asm090
[120] VanderWeele, T. J. and Tchetgen Tchetgen, E. J (2014). Attributing effects to interactions. Epidemiology, in press.;
[121] VanderWeele, T. J.; Vansteelandt, S., A weighting approach to causal effects and additive interaction in case-control studies: Marginal structural linear odds models, American Journal of Epidemiology, 174, 1197-1203 (2011); · doi:10.1093/aje/kwr334
[122] VanderWeele, T. J.; Vansteelandt, S.; Robins, J. M., Marginal structural models for sufficient cause interactions, American Journal of Epidemiology, 171, 506-514 (2010); · doi:10.1093/aje/kwp396
[123] Vansteelandt, S.; VanderWeele, T. J.; Robins, J. M., Semiparametric inference for sufficient cause interactions, Journal of the Royal Statistical Society, Series B, 74, 223-244 (2012); · Zbl 1411.62116 · doi:10.1111/j.1467-9868.2011.01011.x
[124] Vansteelandt, S.; VanderWeele, T. J.; Tchetgen, E. J.; Robins, J. M., Multiply robust inference for statistical interactions, Journal of the American Statistical Association, 103, 1693-1704 (2008); · Zbl 1286.62033 · doi:10.1198/016214508000001084
[125] Walter, S. D.; Holford, T. R., Additive, multiplicative, and other models for disease risks, American Journal of Epidemiology, 108, 341-346 (1978);
[126] Weinberg, C. R.; Shi, M.; Umbach, D. M., A sibling-augmented case-only approach for assessing multiplicative gene-environment interactions, American Journal of Epidemiology, 174, 1183-1189 (2011); · doi:10.1093/aje/kwr231
[127] Yang, Q.; Khoury, M. J.; Flanders, W. D., Sample size requirements in case-only designs to detect gene-environment interaction, American Journal of Epidemiology, 146, 713-719 (1997); · doi:10.1093/oxfordjournals.aje.a009346
[128] Yang, Q.; Khoury, M. J.; Sun, F.; Flanders, W. D., Case-only design to measure gene-gene interaction, Epidemiology, 10, 167-170 (1999); · doi:10.1097/00001648-199903000-00014
[129] Yelland, L. N.; Salter, A. B.; Ryan, P., Relative risk estimation in randomized controlled trials: a comparison of methods for independent observations, International Journal of Biostatistics, 7, 1, 1-31 (2011);
[130] Zhang, L.; Mukherjee, B.; Ghosh, M.; Gruber, S.; Moreno, V., Accounting for error due to misclassification of exposures in case-control studies of gene-environment interaction, Statistics in Medicine, 27, 2756-2783 (2008); · doi:10.1002/sim.3044
[131] Zhao, L.; Tian, L.; Cai, T.; Claggett, B.; Wei, L. J., Effectively selecting a target population for a future comparative study, Journal of the American Statistical Association, 108, 527-539 (2013); · Zbl 06195958 · doi:10.1080/01621459.2013.770705
[132] Zou, G. Y., On the estimation of additive interaction by use of the four-by-two table and beyond, American Journal of Epidemiology, 168, 212-224 (2008); · doi:10.1093/aje/kwn104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.