×

Splitting integrators for the stochastic Landau-Lifshitz equation. (English) Zbl 1342.60111

Summary: In this article, we construct splitting integrators for a finite-dimensional version of the stochastic Landau-Lifshitz equation under the influence of global and local energy terms. The methods preserve the length of the magnetization spins exactly and reproduce the energy evolution of the equation. Depending on the structure of the Hamiltonian, the methods either are explicit or contain nonlinear subsystems of small dimension, which leads to a smaller computational cost compared with standard implicit integrators. Numerical simulations are provided for evidencing convergence order and long-time behavior of the constructed methods.

MSC:

60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
65C30 Numerical solutions to stochastic differential and integral equations

Software:

SDELab
Full Text: DOI

References:

[1] A. Aharoni, {\it Introduction to the Theory of Ferromagnetism}, Internat. Ser. Monogr. Phys. 93, Clarendon Press, Oxford, UK, 1996.
[2] F. Alouges, {\it A new finite element scheme for Landau-Lifchitz equations}, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), pp. 187-196, http://dx.doi.org/10.3934/dcdss.2008.1.187 doi:10.3934/dcdss.2008.1.187. · Zbl 1152.35304
[3] F. Alouges, A. de Bouard, and A. Hocquet, {\it A semi-discrete scheme for the stochastic Landau-Lifshitz equation}, Stoch. Partial Differ. Equ. Anal. Comput., 2 (2014), pp. 281-315, http://dx.doi.org/10.1007/s40072-014-0033-7 doi:10.1007/s40072-014-0033-7. · Zbl 1332.35348
[4] L. Arnold, {\it Stochastische Differentialgleichungen. Theorie und Anwendung}, R. Oldenbourg Verlag, Munich, Vienna, 1973. · Zbl 0266.60039
[5] T. Arponen and B. Leimkuhler, {\it An efficient geometric integrator for thermostatted anti-ferromagnetic models}, BIT, 44 (2004), pp. 403-424, http://dx.doi.org/10.1023/B:BITN.0000046812.08252.34doi:10.1023/B:BITN.0000046812. · Zbl 1075.65095
[6] L. Baňas, Z. Brzeźniak, M. Neklyudov, and A. Prohl, {\it A convergent finite-element-based discretization of the stochastic Landau-Lifshitz-Gilbert equation}, IMA J. Numer. Anal., 34 (2014), pp. 502-549, http://dx.doi.org/10.1093/imanum/drt020 doi:10.1093/imanum/drt020. · Zbl 1298.65012
[7] L. Baňas, Z. Brzeźniak, M. Neklyudov, and A. Prohl, {\it Stochastic Ferromagnetism. Analysis and Numerics}, De Gruyter Stud. Math. 58, De Gruyter, Berlin, 2014. · Zbl 1288.82001
[8] L. Baňas, Z. Brzeźniak, and A. Prohl, {\it Computational studies for the stochastic Landau-Lifshitz-Gilbert equation}, SIAM J. Sci. Comput., 35 (2013), pp. B62-B81, http://dx.doi.org/10.1137/110856666. · Zbl 1302.65024
[9] G. Bertotti, I. D. Mayergoyz, and C. Serpico, {\it Nonlinear Magnetization Dynamics in Nanosystems}, Elsevier Ser. Electromagn., Elsevier, Amsterdam, 2009. · Zbl 1181.37002
[10] N. Bou-Rabee and H. Owhadi, {\it Long-run accuracy of variational integrators in the stochastic context}, SIAM J. Numer. Anal., 48 (2010), pp. 278-297, http://dx.doi.org/10.1137/090758842 doi:10.1137/090758842. · Zbl 1215.65012
[11] W. F. Brown {\it Thermal fluctuations of a single-domain particle}, Phys. Rev., 130 (1963), pp. 1677-1686, http://dx.doi.org/10.1103/PhysRev.130.1677 doi:10.1103/PhysRev.130.1677.
[12] K. Burrage and P. M. Burrage, {\it High strong order methods for non-commutative stochastic ordinary differential equation systems and the Magnus formula}, Phys. D, 133 (1999), pp. 43-48, http://dx.doi.org/10.1016/S0167-2789(99)00097-4 doi:10.1016/S0167-2789(99)00097-4. · Zbl 1194.65023
[13] F. Castell and J. Gaines, {\it An efficient approximation method for stochastic differential equations by means of the exponential Lie series}, Math. Comput. Simulation, 38 (1995), pp. 13-19, http://dx.doi.org/10.1016/0378-4754(93)E0062-A doi:10.1016/0378-4754(93)E0062-A. · Zbl 0824.60054
[14] I. Cimrák, {\it A survey on the numerics and computations for the Landau-Lifshitz equation of micromagnetism}, Arch. Comput. Methods Engrg., 15 (2008), pp. 277-309, http://dx.doi.org/10.1007/s11831-008-9021-2. · Zbl 1206.78008
[15] M. d’Aquino, C. Serpico, and G. Miano, {\it Geometrical integration of Landau-Lifshitz-Gilbert equation based on the mid-point rule}, J. Comput. Phys., 209 (2005), pp. 730-753, http://dx.doi.org/10.1016/j.jcp.2005.04.001. · Zbl 1066.78006
[16] W. E and X.-P. Wang, {\it Numerical methods for the Landau-Lifshitz equation}, SIAM J. Numer. Anal., 38 (2000), pp. 1647-1665, http://dx.doi.org/10.1137/S0036142999352199 doi:10.1137/S0036142999352199. · Zbl 0988.65079
[17] J. Fidler and T. Schrefl, {\it Micromagnetic modelling–the current state of the art}, J. Phys. D Appl. Phys., 33 (2000), pp. R135-R156, http://dx.doi.org/10.1088/0022-3727/33/15/201 doi:10.1088/0022-3727/33/15/201.
[18] J. Frank, W. Huang, and B. Leimkuhler, {\it Geometric integrators for classical spin systems}, J. Comput. Phys., 133 (1997), pp. 160-172, http://dx.doi.org/10.1006/jcph.1997.5672 doi:10.1006/jcph.1997.5672. · Zbl 0878.65110
[19] H. Gilsing and T. Shardlow, {\it SDELab: A package for solving stochastic differential equations in MATLAB}, J. Comput. Appl. Math., 205 (2007), pp. 1002-1018, http://dx.doi.org/10.1016/j.cam.2006.05.037. · Zbl 1116.65005
[20] E. Hairer, C. Lubich, and G. Wanner, {\it Geometric Numerical Integration}, Springer Ser. Comput. Math. 31, Springer-Verlag, Berlin, 2006. · Zbl 1094.65125
[21] M. Kružík and A. Prohl, {\it Recent developments in the modeling, analysis, and numerics of ferromagnetism}, SIAM Rev., 48 (2006), pp. 439-483, http://dx.doi.org/10.1137/S0036144504446187 doi:10.1137/S0036144504446187. · Zbl 1126.49040
[22] D. Lewis and N. Nigam, {\it Geometric integration on spheres and some interesting applications}, J. Comput. Appl. Math., 151 (2003), pp. 141-170, http://dx.doi.org/10.1016/S0377-0427(02)00743-4 doi:10.1016/S0377-0427(02)00743-4. · Zbl 1013.65111
[23] G. Lord, S. J. A. Malham, and A. Wiese, {\it Efficient strong integrators for linear stochastic systems}, SIAM J. Numer. Anal., 46 (2008), pp. 2892-2919, http://dx.doi.org/10.1137/060656486 doi:10.1137/060656486. · Zbl 1179.60046
[24] S. J. A. Malham and A. Wiese, {\it Efficient almost-exact Lévy area sampling}, Statist. Probab. Lett., 88 (2014), pp. 50-55, http://dx.doi.org/10.1016/j.spl.2014.01.022 doi:10.1016/j.spl.2014.01.022. · Zbl 1296.60180
[25] J. C. Mattingly, A. M. Stuart, and D. J. Higham, {\it Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise}, Stochastic Process. Appl., 101 (2002), pp. 185-232, http://dx.doi.org/10.1016/S0304-4149(02)00150-3 doi:10.1016/S0304-4149(02)00150-3. · Zbl 1075.60072
[26] R. I. McLachlan, K. Modin, and O. Verdier, {\it Symplectic integrators for spin systems}, Phys. Rev. E, 89 (2014), 061301(R), http://dx.doi.org/10.1103/PhysRevE.89.061301 doi:10.1103/PhysRevE.89.061301. · Zbl 1333.65139
[27] J. H. Mentink, M. V. Tretyakov, A. Fasolino, M. I. Katsnelson, and T. Rasing, {\it Stable and fast semi-implicit integration of the stochastic Landau-Lifshitz equation}, J. Phys. Condens. Matter, 22 (2010), 176001, http://dx.doi.org/10.1088/0953-8984/22/17/176001 doi:10.1088/0953-8984/22/17/176001.
[28] G. N. Milstein, Yu. M. Repin, and M. V. Tretyakov, {\it Numerical methods for stochastic systems preserving symplectic structure}, SIAM J. Numer. Anal., 40 (2002), pp. 1583-1604, http://dx.doi.org/10.1137/S0036142901395588 doi:10.1137/S0036142901395588. · Zbl 1028.60064
[29] G. N. Milstein and M. V. Tretyakov, {\it Quasi-symplectic methods for Langevin-type equations}, IMA J. Numer. Anal., 23 (2003), pp. 593-626, http://dx.doi.org/10.1093/imanum/23.4.593 doi:10.1093/imanum/23.4.593. · Zbl 1055.65141
[30] G. N. Milstein and M. V. Tretyakov, {\it Stochastic Numerics for Mathematical Physics}, Sci. Comput., Springer-Verlag, Berlin, 2004. · Zbl 1085.60004
[31] T. Misawa, {\it A Lie algebraic approach to numerical integration of stochastic differential equations}, SIAM J. Sci. Comput., 23 (2001), pp. 866-890, http://dx.doi.org/10.1137/S106482750037024X doi:10.1137/S106482750037024X. · Zbl 1004.65010
[32] M. Neklyudov and A. Prohl, {\it The role of noise in finite ensembles of nanomagnetic particles}, Arch. Ration. Mech. Anal., 210 (2013), pp. 499-534, http://dx.doi.org/10.1007/s00205-013-0654-4 doi:10.1007/s00205-013-0654-4. · Zbl 1295.78005
[33] A. Prohl, {\it Computational Micromagnetism}, Adv. Numer. Math., B. G. Teubner, Stuttgart, 2001. · Zbl 0988.78001
[34] J. M. Sanz-Serna, and M. P. Calvo, {\it Numerical Hamiltonian Problems}, Appl. Math. Math. Comput. 7, Chapman & Hall, London, 1994. · Zbl 0816.65042
[35] T. Schrefl, W. Scholz, D. Süss, and J. Fidler, {\it Computational micromagnetics: Prediction of time dependent and thermal properties}, J. Magn. Magn. Mater., 226 (2001), pp. 1213-1219, http://dx.doi.org/10.1016/S0304-8853(00)01058-1 doi:10.1016/S0304-8853(00)01058-1.
[36] C. Serpico, I. D. Mayergoyz, and G. Bertotti, {\it Numerical technique for integration of the Landau-Lifshitz equation}, J. Appl. Phys., 89 (2001), pp. 6991-6993, http://dx.doi.org/10.1063/1.1358818 doi:10.1063/1.1358818.
[37] T. Shardlow, {\it Splitting for dissipative particle dynamics}, SIAM J. Sci. Comput., 24 (2003), pp. 1267-1282, http://dx.doi.org/10.1137/S1064827501392879 doi:10.1137/S1064827501392879. · Zbl 1043.60048
[38] M. Slodička and I. Cimrák, {\it Numerical study of nonlinear ferromagnetic materials}, Appl. Numer. Math., 46 (2003), pp. 95-111, http://dx.doi.org/10.1016/S0168-9274(03)00010-2 doi:10.1016/S0168-9274(03)00010-2. · Zbl 1027.78002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.