×

Location of poles for the Hastings-McLeod solution to the second Painlevé equation. (English) Zbl 1342.30026

Summary: We show that the well-known Hastings-McLeod solution to the second Painlevé equation is pole-free in the region \(\arg x \in [-\frac{\pi }{3},\frac{\pi }{3}]\cup [\frac{2\pi }{3},\frac{ 4 \pi }{3}]\), which proves an important special case of a general conjecture concerning pole distributions of Painlevé transcedents proposed by Novokshenov. Our strategy is to construct explicit quasi-solutions approximating the Hastings-McLeod solution in different regions of the complex plane and estimate the errors rigorously. The main idea is very similar to the one used to prove Dubrovin’s conjecture for the first Painlevé equation, but there are various technical improvements.

MSC:

30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory
30E10 Approximation in the complex plane
34M55 Painlevé and other special ordinary differential equations in the complex domain; classification, hierarchies

Software:

DLMF

References:

[1] Adali, A., Tanveer, T.: Rigorous analytical approximation of tritronquee solution to Painleve-1 and the first singularity, preprint. arXiv:1412.3782 · Zbl 1352.34114
[2] Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12, 1119-1178 (1999) · Zbl 0932.05001 · doi:10.1090/S0894-0347-99-00307-0
[3] Bertola, M.: On the location of poles for the Ablowitz-Segur family of solutions to the second Painlevé equation. Nonlinearity 25, 1179-1185 (2012) · Zbl 1254.34123 · doi:10.1088/0951-7715/25/4/1179
[4] Bertola, M., Tovbis, A.: Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the tritronquée solution to Painlevé I. Commun. Pure Appl. Math. 66, 678-752 (2013) · Zbl 1355.35169 · doi:10.1002/cpa.21445
[5] Bleher, P., Its, A.: Double scaling limit in the random matrix model: the Riemann-Hilbert approach. Commun. Pure Appl. Math. 56, 433-516 (2003) · Zbl 1032.82014 · doi:10.1002/cpa.10065
[6] Boutroux, P.: Recherches sur les transcendantes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre. Ann. Sci. école Norm. Sup. (3) 30, 255-375 (1913) · JFM 44.0382.02
[7] Boutroux, P.: Recherches sur les transcendantes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre (suite). Ann. Sci. école Norm. 31, 99-159 (1914) · JFM 45.0478.02
[8] Claeys, T., Kuijlaars, A.B.J.: Universality of the double scaling limit in random matrix models. Commun. Pure Appl. Math. 59, 1573-1603 (2006) · Zbl 1111.35031 · doi:10.1002/cpa.20113
[9] Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1995) · Zbl 0064.33002
[10] Costin, O.: On Borel summation and Stokes phenomenon for rank-1 nonlinear differential systems of differential equations. Duke Math. J. 93, 289-344 (1998) · Zbl 0948.34068 · doi:10.1215/S0012-7094-98-09311-5
[11] Costin, O., Costin, R.D.: On the formation of singularities of solutions of nonlinear differential systems in antistokes directions. Invent. Math. 145, 425-485 (2001) · Zbl 1034.34102 · doi:10.1007/s002220100153
[12] Costin, O., Huang, M., Schlag, W.: On the spectral properties of \[L_{\pm }\] L± in three dimensions. Nonlinearity 25, 125-164 (2012) · Zbl 1232.35106 · doi:10.1088/0951-7715/25/1/125
[13] Costin, O., Huang, M., Tanveer, S.: Proof of the Dubrovin conjecture and analysis of the tritronqué solutions of \[P_{\rm I}\] PI. Duke Math. J. 163, 665-704 (2014) · Zbl 1305.34151 · doi:10.1215/00127094-2429589
[14] Delvaux, S., Kuijlaars, A.B.J.: A phase transition for non-intersecting Brownian motions, and the Painlevé II equation. Int. Math. Res. Not. 2009, 3639-3725 (2009) · Zbl 1182.60023
[15] Delvaux, S., Kuijlaars, A.B.J., Zhang, L.: Critical behavior of non-intersecting Brownian motions at a tacnode. Commun. Pure Appl. Math. 64, 1305-1383 (2011) · Zbl 1231.60085 · doi:10.1002/cpa.20373
[16] Dubrovin, B., Grava, T., Klein, C.: On universality of critical behavior in the focusing nonlinear Schrödinger equation, elliptic umbilic catastrophe and the tritonqueé solution to the Painlevé-I equation. J. Nonlinear Sci. 19, 57-94 (2009) · Zbl 1220.37048 · doi:10.1007/s00332-008-9025-y
[17] Duits, M., Geudens, D.: A critical phenomenon in the two-matrix model in the quartic/quadratic case. Duke Math. J. 162, 1383-1462 (2013) · Zbl 1286.60006 · doi:10.1215/00127094-2208757
[18] Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Y.: Painlevé transcendents: The Riemann-Hilbert approach, Mathematical Surveys and Monographs 128. Am. Math. Soc., Providence, RI (2006) · Zbl 1111.34001
[19] Fornberg, B., Weideman, J.A.C.: A numerical methodology for the Painlevé equations. J. Comput. Phys. 230, 5957-5973 (2011) · Zbl 1220.65092 · doi:10.1016/j.jcp.2011.04.007
[20] Fornberg, B., Weideman, J.A.C.: A computational exploration of the second Painlevé equation. Found. Comput. Math. 14, 985-1016 (2014) · Zbl 1305.33034 · doi:10.1007/s10208-013-9156-x
[21] Forrester, P.J., Witte, N.S.: Painlevé II in random matrix theory and related fields. Constr. Approx. 41, 589-613 (2015) · Zbl 1318.81048 · doi:10.1007/s00365-014-9243-5
[22] Hastings, S.P., McLeod, J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Ration. Mech. Anal. 73, 31-51 (1980) · Zbl 0426.34019 · doi:10.1007/BF00283254
[23] Its, A.R., Kapaev, A.A.: Quasi-linear Stokes phenomenon for the second Painlevé transcendent. Nonlinearity 16, 363-386 (2003) · Zbl 1048.34146 · doi:10.1088/0951-7715/16/1/321
[24] Kapaev, A.A.: Global asymptotics of the second Painlevé transcendent. Phys. Lett. A 167, 356-362 (1992) · doi:10.1016/0375-9601(92)90271-M
[25] Kapaev, A.A.: Quasi-linear Stokes phenomenon for the Painlevé first equation. J. Phys. A Math. Gen. 37, 11149-11167 (2004) · Zbl 1080.34071 · doi:10.1088/0305-4470/37/46/005
[26] Masoero, D.: Poles of intégrale tritronquée and anharmonic oscillators: a WKB approach. J. Phys. A 43, 095201 (2000) · Zbl 1194.34170 · doi:10.1088/1751-8113/43/9/095201
[27] Masoero, D.: Poles of intégrale tritronquée and anharmonic oscillators: asymptotic localization from WKB analysis. Nonlinearity 23, 2501-2507 (2010) · Zbl 1204.33026 · doi:10.1088/0951-7715/23/10/008
[28] Novokshenov, V.Y.: Padé approximations for Painlevé I and II transcendents, (Russian) Teoret. Math. Fiz. 159, 515-526 (2009); translation in Theor. Math. Phys. 159, 853-862 (2009) · Zbl 1185.34139
[29] Novokshenov, V.Y.: Distributions of poles to Painlevé transcendents via Padé approximations. Constr. Approx. 39, 85-99 (2014) · Zbl 1304.30042 · doi:10.1007/s00365-013-9190-6
[30] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010). Print companion to [DLMF] · Zbl 1198.00002
[31] Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Phys. Lett. B 305, 115-118 (1993) · Zbl 0789.35152 · doi:10.1016/0370-2693(93)91114-3
[32] Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151-174 (1994) · Zbl 0789.35152 · doi:10.1007/BF02100489
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.