×

Infinite dimensional proper subspaces of computable vector spaces. (English) Zbl 1338.03086

Summary: This article examines and distinguishes different techniques for coding incomputable information into infinite dimensional proper subspaces of a computable vector space, and is divided into two main parts. In the first part we describe different methods for coding into infinite dimensional subspaces. More specifically, we construct several computable infinite dimensional vector spaces each of which satisfies one of the following: 0.7cm
(1)
Every infinite/coinfinite dimensional subspace computes Turing’s Halting Set \(\emptyset^\prime\);
(2)
Every infinite/cofinite dimensional proper subspace computes Turing’s Halting Set \(\emptyset^\prime\);
(3)
There exists \(x\in V\) such that every infinite dimensional proper subspace not containing \(x\) computes Turing’s Halting Set \(\emptyset^\prime\);
(4)
Every infinite dimensional proper subspace computes Turing’s Halting Set \(\emptyset^\prime\).
Vector space (4) generalizes vector spaces (1) and (2), and its construction is more complicated. The same simple and natural technique is used to construct vector spaces (1)–(3). Finally, we examine the reverse mathematical implications of our constructions (1)–(4). In the second part we examine the limitations of our simple and natural method for coding into infinite dimensional subspaces described in the previous paragraph. In particular, we prove that our simple and natural coding technique cannot produce a vector space of type (4) above, and that any vector space of type (4) must have “densely many” (from a certain point of view) finite dimensional computable subspaces. In other words, the construction of a vector space of type (4) is necessarily more complicated than the construction of vector spaces of types (1)–(3). We also introduce a new statement (in second order arithmetic) about the existence of infinite dimensional proper subspaces in a restricted class of vector spaces related to (1)–(3) above and show that it is implied by weak König’s lemma in the context of reverse mathematics. In the context of reverse mathematics this gives rise to two statements from effective algebra about the existence of infinite dimensional proper subspaces (for a certain class of vector spaces) of the form \((\forall V)[X(V)\to A(V)]\) and \((\forall V)[X(V)\to B(V)]\), that each imply \(\mathsf{ACA}_{0}\) over \(\mathsf{RCA}_{0}\), but such that the seemingly weaker statement \((\forall V)[X(V)\to A(V)\vee B(V)]\) is provable via \(\mathsf{WKL}_{0}\) over \(\mathsf{RCA}_{0}\). Furthermore, we highlight some general similarities between constructing of infinite dimensional proper subspaces of computable vector spaces and constructing solutions to computable instances of various combinatorial principles such as Ramsey’s Theorem for pairs.

MSC:

03D45 Theory of numerations, effectively presented structures
03B30 Foundations of classical theories (including reverse mathematics)
03D15 Complexity of computation (including implicit computational complexity)
03D55 Hierarchies of computability and definability
03F35 Second- and higher-order arithmetic and fragments
Full Text: DOI

References:

[1] Atiyah, M. F.; Macdonald, I. G., Introduction to Commutative Algebra (1969), Westview Press: Westview Press Oxford · Zbl 0175.03601
[2] Baur, A. W., Rekursive Algebren mit Kettenbedingungen, Z. Math. Logik Grundl. Math., 20, 37-46 (1974) · Zbl 0317.02050
[3] Cenzer, D.; Jockusch, C. G., \( \Pi_1^0\)-classes - structure and applications, (Cholak, P.; Lempp, S.; Lerman, M.; Shore, R., Proc. 1999 AMS Summer Institute on Computability Theory and Applications. Proc. 1999 AMS Summer Institute on Computability Theory and Applications, Contemp. Math. (1999), American Mathematical Society: American Mathematical Society Providence, RI), 39-59 · Zbl 0962.03040
[4] Cenzer, D., \( \Pi_1^0\)-classes in computability theory, (Griffor, E., Handbook of Computability Theory (1999), North-Holland: North-Holland Amsterdam), 37-85 · Zbl 0939.03047
[5] Cholak, P. A.; Jockusch, C. G.; Slaman, T. A., On the strength of Ramsey’s theorem for pairs, J. Symbolic Logic, 66, 1-55 (2001) · Zbl 0977.03033
[6] Conidis, C. J., Chain conditions in computable rings, Trans. Amer. Math. Soc., 362, 6523-6550 (2010) · Zbl 1215.03017
[7] Conidis, C. J., On the complexity of radicals in noncommutative rings, J. Algebra, 322, 3670-3680 (2009) · Zbl 1182.03073
[9] Conidis, C. J., Comparing theorems of hyperarithmetic analysis with the arithmetic Bolzano-Weierstrass theorem, Trans. Amer. Math. Soc., 364, 9, 4465-4494 (2012) · Zbl 1287.03030
[10] Conidis, C. J., Computability theory and applications (2009), University of Chicago, PhD thesis
[11] Diamondstone, D. E.; Dzhafarov, D. D.; Soare, R. I., \( \Pi_1^0\)-classes, Peano arithmetic, randomness, and computable domination, Notre Dame J. Form. Log., 173, 33-56 (1972)
[12] Downey, R. G.; Hirschfeldt, D. R., Hirschfeldt Algorithmic Randomness and Complexity (2010), Springer: Springer Berlin · Zbl 1221.68005
[13] Downey, R. G.; Lempp, S.; Mileti, J. R., Ideals in computable rings, J. Algebra, 314, 872-887 (2007) · Zbl 1127.03037
[14] Downey, R. G.; Hirschfeldt, D. R.; Kach, A. M.; Lempp, S.; Mileti, J. R.; Montalbán, A., Subspaces of computable vector spaces, J. Algebra, 314, 888-894 (2007) · Zbl 1127.03036
[15] Dummit, D. S.; Foote, R. M., Abstract Algebra (1999), Wiley: Wiley New York · Zbl 0943.00001
[16] Friedman, H. M.; Simpson, S. G.; Smith, R. L., Countable algebra and set existence axioms, Ann. Pure Appl. Logic, 25, 141-181 (1983) · Zbl 0575.03038
[17] Friedman, H. M.; Simpson, S. G.; Smith, R. L., Addendum to: “Countable algebra and set existence axioms”, Ann. Pure Appl. Logic, 28, 319-320 (1985) · Zbl 0575.03039
[18] Fröhlich, A.; Shepherdson, J. C., Effective procedures in field theory, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 248, 407-432 (1956) · Zbl 0070.03502
[19] Hájek, P.; Pudlák, P., Metamathematics of First-Order Arithmetic, Perspect. Math. Logic (1999), Springer: Springer Berlin
[20] Hermann, G., Die Frage der endlichen vielen Schritte in der Theorie der Polynomideale, Math. Ann., 95, 736-738 (1926) · JFM 52.0127.01
[21] Hirschfeldt, D. R.; Shore, R. A., Combinatorial principles weaker than Ramsey’s theorem for pairs, J. Symbolic Logic, 72, 171-206 (2007) · Zbl 1118.03055
[22] Hirschfeldt, D. R.; Shore, R. A.; Slaman, T. A., The atomic model theorem and type omitting, Trans. Amer. Math. Soc., 361, 5805-5837 (2009) · Zbl 1184.03005
[23] Jockusch, C. G.; Soare, R. I., \( \Pi_1^0\)-classes and degrees of theories, Trans. Amer. Math. Soc., 173, 33-56 (1972) · Zbl 0262.02041
[24] Kronecker, L., Grundzüge einer arithmetischen Theorie der algebraischen Grössen, J. Reine Angew. Math., 92, 1-122 (1882) · JFM 14.0038.02
[25] Lang, S., Algebra (2002), Springer: Springer Berlin · Zbl 0984.00001
[26] Matsumura, H., Commutative Ring Theory (1986), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0603.13001
[27] Metakides, G.; Nerode, A., Effective content of field theory, Ann. Math. Logic, 17, 289-320 (1979) · Zbl 0469.03028
[28] Montalbán, A., Indecomposable linear orders and theories of hyperarithmetic analysis, J. Math. Log., 6, 89-120 (2006) · Zbl 1105.03061
[29] Montalbán, A., Open questions in reverse mathematics, Bull. Symbolic Logic, 17, 431-454 (2011) · Zbl 1233.03023
[30] Nies, A. O., Nies Computability and Randomness (2009), Oxford University Press: Oxford University Press Oxford · Zbl 1169.03034
[31] Paris, J. B.; Kirby, L. A.S., \( \Sigma_n\) collection schemas in arithmetic, (Logic Colloquium ’77. Logic Colloquium ’77, Stud. Logic Found. Math., vol. 96 (1977), North-Holland: North-Holland Amsterdam) · Zbl 0426.00004
[32] Rabin, M., Computable algebra, general theory, and theory of computable fields, Trans. Amer. Math. Soc., 95, 341-360 (1960) · Zbl 0156.01201
[33] Remmel, J., A \(r\)-maximal vector space not contained in any maximal vector space, J. Symbolic Logic, 43, 3, 430-441 (1978) · Zbl 0409.03028
[34] Schoenfeld, J. R., Degrees of models, J. Symbolic Logic, 25, 233-237 (1960) · Zbl 0105.24801
[35] Scott, D. S., Algebras of sets binumerable in complete extensions of arithmetic, Proc. Sympos. Pure Math., 5, 357-366 (1962) · Zbl 0199.02601
[36] Seetapun, D.; Slaman, T. A., On the strength of Ramsey’s theorem, Notre Dame J. Form. Log., 36, 570-582 (1995) · Zbl 0843.03034
[37] Shore, R. A., Reverse mathematics: the playground of logic, Bull. Symbolic Logic, 16, 378-402 (2010) · Zbl 1218.03006
[38] Shore, R. A., Controlling the dependence degree of a recursively enumerable vector space, J. Symbolic Logic, 43, 13-22 (1978) · Zbl 0399.03032
[39] Simpson, S. G., Subsystems of Second Order Arithmetic (2009), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1181.03001
[40] Soare, R. I., Recursively Enumerable Sets and Degrees (1987), Springer: Springer Berlin · Zbl 0623.03042
[42] Solomon, D. R., \( \Pi_1^1 - CA_0\) and order types of countable ordered groups, J. Symbolic Logic, 66, 192-206 (2001) · Zbl 0981.03060
[43] Solomon, D. R., Ordered groups: a case study in reverse mathematics, Bull. Symbolic Logic, 5, 45-58 (1999) · Zbl 0922.03078
[44] Solomon, D. R., Reverse mathematics and fully ordered groups, Notre Dame J. Form. Log., 39, 157-189 (1998) · Zbl 0973.03076
[45] Turing, A. M., On computable numbers, with an application to the Entscheidungsproblem, Proc. Lond. Math. Soc., 42, 230-265 (1936) · JFM 62.1059.03
[46] Turing, A. M., On computable numbers, with an application to the Entscheidungsproblem: A correction, Proc. Lond. Math. Soc., 43, 544-546 (1937) · JFM 63.0823.02
[47] van der Waerden, B. L., Algebra, vol. 1 (1991), Springer: Springer Berlin · Zbl 0724.12002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.