×

Dunkl transform of \((\beta,\gamma)\)-Dunkl Lipschitz functions. (English) Zbl 1334.46023

Let \(\alpha\geq-\frac12\), \(1<p<2\) and \(L_{p,\alpha}\) be the space of all \(f\) defined on \(\mathbb R\) such that \[ \|f\|_{p,\alpha}:=\left(\frac1{2^{\alpha+1}\Gamma(\alpha+1)}\int_{\mathbb R}|f(x)|^2|x|^{2\alpha+1}dx\right)^{1/p}<\infty. \] Let \(e_\alpha(x)=j_\alpha(x)+ic_\alpha xj_{\alpha+1}(x)\), \(c_\alpha=\frac1{2\alpha+2}\), \(i=\sqrt{-1}\), \(j_\alpha(\cdot)\) denotes the normalized Bessel function of the first kind. The Dunkl transform, \(\mathcal F_\alpha(f)(\lambda)=\frac1{2^{\alpha+1}\Gamma(\alpha+1)}\int_{\mathbb R}f(x)e_\alpha(\lambda x)|x|^{2\alpha+1}dx,\) turns out to be the Fourier transform when \(\alpha=-\frac12\). The authors derive two asymptotic formulas for \(\int_{|\lambda|\geq r}|\mathcal F_\alpha(f)(\lambda)|^q|\lambda|^{2\alpha+1}d\lambda\), \(r\rightarrow\infty\), \(\frac1p+\frac1q=1\). The first is proved when \(f\) belongs to what the authors call \((\beta,\gamma)\)-Dunkl Lipschitz class, while the second is given for functions of what the authors call \((p,\psi,\gamma)\)-Dini Lipschitz Dunkl class. The results extend known results in the case of the Fourier transform. The classes of functions mentioned above are defined in terms of generalized translation operators.

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
44A15 Special integral transforms (Legendre, Hilbert, etc.)
41A25 Rate of convergence, degree of approximation
41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities)

References:

[1] E. S. Belkina and S. S. Platonov, Equivalence of \(K\)-functionals and moduli of smoothness constructed by generalized Dunkl translations, Izv. Vyssh. Uchebn. Zaved. Mat. 2008 , no. 8, 3-15; translation in Russian Math. (Iz. VUZ) 52 (2008), no. 8, 1-11. · Zbl 1175.43001
[2] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167-183. · doi:10.1090/S0002-9947-1989-0951883-8
[3] C. F. Dunkl, Hankel transforms associated to finite reflection groups, in Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991) , 123-138, Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992. · doi:10.1090/conm/138/1199124
[4] C. F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213-1227. · Zbl 0827.33010 · doi:10.4153/CJM-1991-069-8
[5] E. C. Titchmarsh, Introduction to the theory of Fourier Integrals , Clarendon Press, Oxford, 1937. · Zbl 0017.40404
[6] K. Trimèche, Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators, Integral Transforms Spec. Funct. 13 (2002), no. 1, 17-38. · Zbl 1030.44004 · doi:10.1080/10652460212888
[7] M. S. Younis, Fourier transforms of Dini-Lipschitz functions, Internat. J. Math. Math. Sci. 9 (1986), no. 2, 301-312. · Zbl 0595.42006 · doi:10.1155/S0161171286000376
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.