×

The discrete-time quaternionic quantum walk on a graph. (English) Zbl 1333.81210

Summary: Recently, the quaternionic quantum walk was formulated by the first author as a generalization of discrete-time quantum walks. We deal with the right eigenvalue problem of quaternionic matrices in order to study spectra of the transition matrix of a quaternionic quantum walk. The way to obtain all the right eigenvalues of a quaternionic matrix is given. From the unitary condition on the transition matrix of a quaternionic quantum walk, we deduce some remarkable properties of it. Our main results determine all the right eigenvalues of the quaternionic quantum walk by using those of the corresponding weighted matrix. In addition, we give some examples of quaternionic quantum walks and their right eigenvalues.

MSC:

81S25 Quantum stochastic calculus
60G50 Sums of independent random variables; random walks
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
60F05 Central limit and other weak theorems
15A15 Determinants, permanents, traces, other special matrix functions
11R52 Quaternion and other division algebras: arithmetic, zeta functions

References:

[1] Adler, S.L.: Quaternion Quantum Mechanics and Quantum Fields. Oxford University Press, Cambridge (1995) · Zbl 0885.00019
[2] Altmann, S.L.: Rotations, Quaternions, and Double Groups. Dover Publications, Mineola (2005) · Zbl 0683.20037
[3] Ambainis, A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 01, 507 (2003) · Zbl 1069.81505 · doi:10.1142/S0219749903000383
[4] Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pp. 37-49 (2001) · Zbl 1323.81021
[5] Aslaksen, H.: Quaternionic determinants. Math. Intell. 18, 57-65 (1996) · Zbl 0881.15007 · doi:10.1007/BF03024312
[6] Bass, H.: The Ihara-Selberg zeta function of a tree lattice. Int. J. Math. 3, 717-797 (1992) · Zbl 0767.11025 · doi:10.1142/S0129167X92000357
[7] Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823-843 (1936) · Zbl 0015.14603 · doi:10.2307/1968621
[8] Brenner, J.L.: Matrices of quaternions. Pac. J. Math. 1, 329-335 (1951) · Zbl 0043.01402 · doi:10.2140/pjm.1951.1.329
[9] Cantero, M.J., Grunbaum, F.A., Moral, L., Velazquez, L.: The CGMV method for quantum walks. Quantum Inf. Process. 11, 1149-1192 (2012) · Zbl 1252.82082 · doi:10.1007/s11128-012-0448-x
[10] Conway, J.H., Smith, D.: On Quaternions and Octonions. A K Peters, Ltd, Natick (2003) · Zbl 1098.17001
[11] De Leo, S., Scolarici, G., Solombrino, L.: Quaternionic eigenvalue problem. J. Math. Phys. 43, 5815-5829 (2002) · Zbl 1060.30059 · doi:10.1063/1.1511789
[12] Emms, D., Hancock, E.R., Severini, S., Wilson, R.C.: A matrix representation of graphs and its spectrum as a graph invariant. Electr. J. Comb. 13, R34 (2006) · Zbl 1099.05082
[13] Finkelstein, D.; Jauch, JM; Speiser, D.; Hooker, C. (ed.), Notes on quaternion quantum mechanics, CERN report 59-7 (1959) (1979), Dordrecht
[14] Foata, D., Zeilberger, D.: A combinatorial proof of Bass’s evaluations of the Ihara-Selberg zeta function for graphs. Trans. Am. Math. Soc. 351, 2257-2274 (1999) · Zbl 0921.05025 · doi:10.1090/S0002-9947-99-02234-5
[15] Godsil, C., Guo, K.: Quantum walks on regular graphs and eigenvalues. Electr. J. Comb. 18, P165 (2011) · Zbl 1235.05128
[16] Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC), May 1996, pp. 212-219 (1996) · Zbl 0922.68044
[17] Hashimoto, K.: Zeta functions of finite graphs and representations of \[p\] p-adic groups. In Adv. Stud. Pure Math., vol. 15, pp. 211-280. Academic Press, New York (1989) · Zbl 0709.22005
[18] Huang, L., So, W.: On left eigenvalues of a quaternionic matrix. Linear Algebra Appl. 323, 105-116 (2001) · Zbl 0976.15014 · doi:10.1016/S0024-3795(00)00246-9
[19] Hall, H.T., Severini, S.: Locality for quantum systems on graphs depends on the number field. arXiv:1204.3681v2 [quant-ph] (2013) · Zbl 1272.81083
[20] Ihara, Y.: On discrete subgroups of the two by two projective linear group over \[p\] p-adic fields. J. Math. Soc. Jpn. 18, 219-235 (1966) · Zbl 0158.27702 · doi:10.2969/jmsj/01830219
[21] Kempe, J.: Quantum random walks—an introductory overview. Contemp. Phys. 44, 307-327 (2003) · doi:10.1080/00107151031000110776
[22] Konno, N.; Franz, U. (ed.); Schürmann, M. (ed.), Quantum walks, No. 1954, 309-452 (2008), Heidelberg · Zbl 1329.82011 · doi:10.1007/978-3-540-69365-9_7
[23] Konno, N.: Quaternionic quantum walks. Quantum Stud. Math. Found 2, 63-76 (2015) · Zbl 1317.81184 · doi:10.1007/s40509-015-0035-9
[24] Konno, N., Sato, I.: On the relation between quantum walks and zeta functions. Quantum Inf. Process. 11, 341-349 (2012) · Zbl 1241.81045 · doi:10.1007/s11128-011-0250-1
[25] Kotani, M., Sunada, T.: Zeta functions of finite graphs. J. Math. Sci. U Tokyo 7, 7-25 (2000) · Zbl 0978.05051
[26] Lee, H.C.: Eigenvalues and canonical forms of matrices with quaternion coefficients. Proc. R. Ir. Acad. Sect. A 52, 253-260 (1949) · Zbl 0036.29802
[27] Manouchehri, K., Wang, J.: Physical Implementation of Quantum Walks. Springer, Berlin (2013) · Zbl 1278.81010
[28] Portugal, R.: Quantum Walks and Search Algorithms. Springer, Berlin (2013) · Zbl 1275.81004 · doi:10.1007/978-1-4614-6336-8
[29] Ren, P., Aleksic, T., Emms, D., Wilson, R.C., Hancock, E.R.: Quantum walks, Ihara zeta functions and cospectrality in regular graphs. Quantum Inf. Process. 10, 405-417 (2011) · Zbl 1216.81043 · doi:10.1007/s11128-010-0205-y
[30] Sato, I.: A new Bartholdi zeta function of a graph. Int. J. Algebra 1, 269-281 (2007) · Zbl 1126.05070
[31] Serre, J.-P.: Trees. Springer, New York (1980) · Zbl 0548.20018 · doi:10.1007/978-3-642-61856-7
[32] Stark, H.M., Terras, A.A.: Zeta functions of finite graphs and coverings. Adv. Math. 121, 124-165 (1996) · Zbl 0874.11064 · doi:10.1006/aima.1996.0050
[33] Sunada, T.: \[L\] L-functions in geometry and some applications. In Lecture Notes in Math., vol. 1201, pp. 266-284. Springer, New York (1986) · Zbl 0605.58046
[34] Sunada, T.: Fundamental Groups and Laplacians. Kinokuniya, Tokyo (1988). (in Japanese) · Zbl 0646.58027 · doi:10.1007/BFb0083059
[35] Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015-1106 (2012) · Zbl 1283.81040 · doi:10.1007/s11128-012-0432-5
[36] Watrous, J.: Quantum simulations of classical random walks and undirected graph connectivity. J. Comput. Syst. Sci. 62(2), 376-391 (2001) · Zbl 0990.68519 · doi:10.1006/jcss.2000.1732
[37] Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21-57 (1997) · Zbl 0873.15008 · doi:10.1016/0024-3795(95)00543-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.