×

A criterion for the normality of unbounded operators and applications to self-adjointness. (English) Zbl 1333.47019

Authors’ abstract: We give and prove a criterion for the normality of unbounded closed operators, which is a sort of a maximality result which will be called “double maximality”. As applications, we show, under some assumptions, that the sum of two symmetric operators is essentially self-adjoint; and that the sum of two unbounded normal operators is essentially normal. Some other important results are also established.

MSC:

47B25 Linear symmetric and selfadjoint operators (unbounded)
47A05 General (adjoints, conjugates, products, inverses, domains, ranges, etc.)

References:

[1] Chernoff, P.R.: A semibounded closed symmetric operator whose square has trivial domain. Proc. Am. Math. Soc. 89(2), 289-290 (1983) · Zbl 0526.47011 · doi:10.1090/S0002-9939-1983-0712639-4
[2] Conway, J.B.: A course in functional analysis. In: GTM, vol. 68, 2nd edn. Springer, Berlin (1990) · Zbl 0706.46003
[3] Devinatz, A., Nussbaum, A.E., von Neumann, J.: On the permutability of self-adjoint operators. Ann. Math. (2) 62, 199-203 (1955) · Zbl 0065.10401 · doi:10.2307/1969674
[4] Dixmier, J.: L’adjoint du Produit de Deux Opérateurs Fermés. Annales de la faculté des sciences de Toulouse 4ème Série 11, 101-106 (1947) · Zbl 0041.44401 · doi:10.5802/afst.438
[5] Fuglede, B.: Conditions for two self-adjoint operators to commute or to satisfy the Weyl relation. Math. Scand. 51(1), 163-178 (1982) · Zbl 0479.47024
[6] Gohberg, I., Goldberg, S., Kaashoek, M.A.: Basic Classes of Linear Operators. Birkhäuser Verlag, Basel (2003) · Zbl 1065.47001 · doi:10.1007/978-3-0348-7980-4
[7] Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1980) · Zbl 0435.47001
[8] Kosaki, H.: On intersections of domains of unbounded positive operators. Kyushu J. Math. 60(1), 3-25 (2006) · Zbl 1102.47014 · doi:10.2206/kyushujm.60.3
[9] Mortad, M.H.: On the adjoint and the closure of the sum of two unbounded operators. Can. Math. Bull. 54(3), 498-505 (2011). doi:10.4153/CMB-2011-041-7 · Zbl 1242.47005 · doi:10.4153/CMB-2011-041-7
[10] Mortad, M.H.: On the normality of the sum of two normal operators. Complex Anal. Oper. Theory 6(1), 105-112 (2012). doi:10.1007/s11785-010-0072-7 · Zbl 1325.47050 · doi:10.1007/s11785-010-0072-7
[11] Naimark, M.: On the square of a closed symmetric operator. Dokl. Akad. Nauk SSSR 26, 866-870 (1940). (ibid. 28 (1940), 207-208) · Zbl 0023.13302
[12] Nelson, E.: Analytic vectors. Ann. Math. (2) 70, 572-615 (1959) · Zbl 0091.10704 · doi:10.2307/1970331
[13] Nussbaum, A.E.: A commutativity theorem for unbounded operators in Hilbert space. Trans. Am. Math. Soc. 140, 485-491 (1969) · Zbl 0181.40905 · doi:10.1090/S0002-9947-1969-0242010-0
[14] Nussbaum, A.E.: A commutativity theorem for semibounded operators in Hilbert space. Proc. Am. Math. Soc. 125(12), 3541-3545 (1997) · Zbl 0883.47012 · doi:10.1090/S0002-9939-97-03977-4
[15] Putnam, C.: Commutation Properties of Hilbert Space Operators. Springer, Berlin (1967) · Zbl 0149.35104 · doi:10.1007/978-3-642-85938-0
[16] Reed, M., Simon, B.: Methods of modern mathematical physics. In: Fourier Analysis, Self-Adjointness, vol. 2. Academic Press, New York (1975) · Zbl 0308.47002
[17] Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, NY (1991) · Zbl 0867.46001
[18] Schmüdgen, K.: On dmains of powers of closed symmetric operators. J. Oper. Theory 9(1), 53-75 (1983) · Zbl 0507.47009
[19] Schmüdgen, K.: Unbounded self-adjoint operators on Hilbert space. In: GTM, vol. 265. Springer, Berlin (2012) · Zbl 1257.47001
[20] Stochel, J., Szafraniec, F.H.: Domination of unbounded operators and commutativity. J. Math. Soc. Jpn. 55(2), 405-437 (2003) · Zbl 1037.47003 · doi:10.2969/jmsj/1191419124
[21] Vasilescu, F.H.: Anticommuting selfadjoint operators. Revue Roumaine Math. Pures Appl. 28(1), 76-91 (1983) · Zbl 0525.47017
[22] Weidmann, J.: Linear operators in Hilbert spaces (translated from the German by J. Szücs). In: GTM, vol. 68. Srpinger, Berlin (1980) · Zbl 0434.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.