×

Boundary measures, generalized Gauss-Green formulas, and mean value property in metric measure spaces. (English) Zbl 1333.30071

In [A. Björn et al., J. Reine Angew. Math. 556, 173–203 (2003; Zbl 1018.31004)] harmonic extensions \[ H_f(x)=\int_{\partial \Omega} f(y)P_{x_0}(x,y)\, d\nu_{x_0}(y) \] for \(f\in L^1(\partial \Omega, \nu_{x_0})\) were constructed, where \(x_0\in \Omega\) is a fixed point, \(\nu_{x_0}\) is a harmonic measure on \(\partial \Omega\) evaluated at \(x_0\) and \(P_{x_0}\) is a real-valued function defined on \(\Omega\times \partial\Omega\).
In the paper under review, the authors determine the Poisson kernel \(P_{x_0}\). To do so, they identify the harmonic measure. It turns out that it is the outward normal derivative of the Green function.
The authors define a metric Laplacian and investigate its properties. An important result is the verification of a Gauss-Green formula. A further result is that harmonic (the definition of harmonicity is based on the Dirichlet form defined in terms of a Cheeger differentiable structure) functions have the mean value property and the converse holds as well.

MSC:

30L99 Analysis on metric spaces
31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions

Citations:

Zbl 1018.31004

References:

[1] Aikawa, H., Kilpeläinen, T., Shanmugalingam, N. and Zhong, X.: Boundary Harnack principle for p -harmonic functions in smooth Euclidean domains. Potential Anal. 26 (2007), no. 3, 281-301. · Zbl 1121.35060 · doi:10.1007/s11118-006-9036-y
[2] Ambrosio, L.: Fine properties of sets of finite perimeter in doubling metric measure spaces. Set-Valued Anal. 10 (2002), no. 2-3, 111-128. · Zbl 1037.28002 · doi:10.1023/A:1016548402502
[3] Ambrosio, L., Miranda jr., M. and Pallara, D.: Special functions of bounded variation in doubling metric measure spaces. In Calculus of variations: topics from the mathematical heritage of E. De Giorgi, 1-45. Quad. Mat. 14, Dept. Math., Seconda Univ. Napoli, Caserta, 2004. · Zbl 1089.49039
[4] Björn, A., Björn, J. and Shanmugalingam, N.: The Dirichlet problem for p - harmonic functions on metric spaces. J. Reine Angew. Math. 556 (2003), 173-203. · Zbl 1018.31004 · doi:10.1515/crll.2003.020
[5] Björn, J., MacManus, P. and Shanmugalingam, N.: Fat sets and pointwise boundary estimates for p -harmonic functions in metric spaces. J. Anal. Math. 85 (2001), 339-369. · Zbl 1003.31004 · doi:10.1007/BF02788087
[6] Camfield, C.: Comparison of BV norms in weighted Euclidean spaces and metric measure spaces. Ph.D. Thesis, University of Cincinnati, 2008. · Zbl 1234.26026
[7] Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9 (1999), no. 3, 428-517. · Zbl 0942.58018 · doi:10.1007/s000390050094
[8] Chen, C. Q., Torres, M. and Ziemer, W. P.: Measure-theoretic analysis and nonlinear conservation laws. Pure Appl. Math. Q. 3 (2007), no. 3, 841-879. · Zbl 1132.35416 · doi:10.4310/PAMQ.2007.v3.n3.a9
[9] Danielli, D., Garofalo, N. and Marola, N.: Local behavior of p -harmonic Green’s functions in metric spaces. Potential Anal. 32 (2010), no. 4, 343-362. · Zbl 1191.31006 · doi:10.1007/s11118-009-9154-4
[10] Franchi, B., Hajlasz, P. and Koskela, P.: Definitions of Sobolev classes on metric spaces. Ann. Inst. Fourier (Grenoble) 49 (1999), no. 6, 1903-1924. · Zbl 0938.46037 · doi:10.5802/aif.1742
[11] Fukushima, M., Oshima, Y. and Takeda, M.: Dirichlet forms and symmetric Markov processes. De Gruyter Studies in Mathematics 19, Walter de Gruyter, Berlin, 1994. · Zbl 0838.31001
[12] Hajlasz, P.: Sobolev spaces on metric-measure spaces. In Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 173-218. Contemp. Math. 338, Amer. Math. Soc., Providence, RI, 2003.
[13] Hajlasz, P. and Koskela, P.: Sobolev met Poincaré. Mem. Amer. Math. Soc. 145, (2000), no. 688, 1-101.
[14] Holopainen, I.: Nonlinear potential theory and quasiregular mappings on Rie- mannian manifolds. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 74 (1990), 1-45. · Zbl 0698.31010
[15] Holopainen, I. and Shanmugalingam, N.: Singular functions on metric measure spaces. Collect. Math. 53 (2002), no. 3, 313-332. · Zbl 1039.31016
[16] Kallunki, S. and Shanmugalingam, N.: Modulus and continuous capacity. Ann. Acad. Sci. Fenn. Math. 26 (2001), no. 2, 455-464. · Zbl 1002.31004
[17] Keith, S.: Modulus and the Poincaré inequality on metric measure spaces. Math. Z. 245 (2003), no. 2, 255-292. · Zbl 1037.31009 · doi:10.1007/s00209-003-0542-y
[18] Kinnunen, J. and Shanmugalingam, N.: Regularity of quasi-minimizers on metric spaces. Manuscripta Math. 105 (2001), no. 3, 401-423. · Zbl 1006.49027 · doi:10.1007/s002290100193
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.