×

Spatial and spatio-temporal log-Gaussian Cox processes: extending the geostatistical paradigm. (English) Zbl 1331.86027

Summary: In this paper we first describe the class of log-Gaussian Cox processes (LGCPs) as models for spatial and spatio-temporal point process data. We discuss inference, with a particular focus on the computational challenges of likelihood-based inference. We then demonstrate the usefulness of the LGCP by describing four applications: estimating the intensity surface of a spatial point process; investigating spatial segregation in a multi-type process; constructing spatially continuous maps of disease risk from spatially discrete data; and real-time health surveillance. We argue that problems of this kind fit naturally into the realm of geostatistics, which traditionally is defined as the study of spatially continuous processes using spatially discrete observations at a finite number of locations. We suggest that a more useful definition of geostatistics is by the class of scientific problems that it addresses, rather than by particular models or data formats.

MSC:

86A32 Geostatistics
62M30 Inference from spatial processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)

Software:

lgcp; WinBUGS; GMRFLib; FFTW; R

References:

[1] Andrieu, C. and Thoms, J. (2008). A tutorial on adaptive MCMC. Stat. Comput. 18 343-373. · doi:10.1007/s11222-008-9110-y
[2] Baddeley, A. J., Møller, J. and Waagepetersen, R. (2000). Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat. Neerl. 54 329-350. · Zbl 1018.62027 · doi:10.1111/1467-9574.00144
[3] Banerjee, S., Gelfand, A. E., Finley, A. O. and Sang, H. (2008). Gaussian predictive process models for large spatial data sets. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 825-848. · Zbl 1533.62065 · doi:10.1111/j.1467-9868.2008.00663.x
[4] Bartlett, M. S. (1964). The spectral analysis of two-dimensional point processes. Biometrika 51 299-311. · Zbl 0124.08601 · doi:10.1093/biomet/51.3-4.299
[5] Bartlett, M. S. (1975). The Statistical Analysis of Spatial Pattern . Chapman & Hall, London. · Zbl 0338.60068
[6] Berman, M. and Diggle, P. (1989). Estimating weighted integrals of the second-order intensity of a spatial point process. J. R. Stat. Soc. Ser. B Stat. Methodol. 51 81-92. · Zbl 0671.62043
[7] Besag, J., York, J. and Mollié, A. (1991). Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Statist. Math. 43 1-59. · Zbl 0760.62029 · doi:10.1007/BF00116466
[8] Best, N. G., Ickstadt, K. and Wolpert, R. L. (2000). Spatial Poisson regression for health and exposure data measured at disparate resolutions. J. Amer. Statist. Assoc. 95 1076-1088. · Zbl 1004.62090 · doi:10.2307/2669744
[9] Bharti, A. R., Nally, J. E., Ricaldi, J. N., Matthias, M. A., Diaz, M. M., Lovett, M. A., Levett, P. N., Gilman, R. H., Willig, M. R., Gotuzzo, E. and Vinetz, J. M. (2003). Leptospirosis: A zoonotic disease of global importance. Lancet. Infect. Dis. 3 757-771.
[10] Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models. J. Amer. Statist. Assoc. 88 9-25. · Zbl 0775.62195 · doi:10.2307/2290687
[11] Brix, A. and Diggle, P. J. (2001). Spatiotemporal prediction for log-Gaussian Cox processes. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 823-841. · Zbl 0996.62076 · doi:10.1111/1467-9868.00315
[12] Brix, A. and Diggle, P. J. (2003). Corrigendum: Spatio-temporal prediction for log-Gaussian Cox processes. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 946. · Zbl 0996.62076
[13] Brown, P. E., Kåresen, K. F., Roberts, G. O. and Tonellato, S. (2000). Blur-generated non-separable space-time models. J. R. Stat. Soc. Ser. B Stat. Methodol. 62 847-860. · Zbl 0957.62081 · doi:10.1111/1467-9868.00269
[14] Cooper, D. and Chinemana, F. (2004). NHS direct derived data: An exciting new opportunity or an epidemiological headache? J. Public Health ( Oxf. ) 26 158-160.
[15] Cooper, D. L., Smith, G. E., O’Brien, S. J., Hollyoak, V. A. and Baker, M. (2003). What can analysis of calls to NHS direct tell us about the epidemiology of gastrointestinal infections in the community? J. Infect. 46 101-105.
[16] Cox, D. R. (1955). Some statistical methods connected with series of events. J. R. Stat. Soc. Ser. B Stat. Methodol. 17 129-157; discussion, 157-164. · Zbl 0067.37403
[17] Cressie, N. A. C. (1991). Statistics for Spatial Data . Wiley, New York. · Zbl 0799.62002
[18] Cressie, N. and Huang, H.-C. (1999). Classes of nonseparable, spatio-temporal stationary covariance functions. J. Amer. Statist. Assoc. 94 1330-1340. · Zbl 0999.62073 · doi:10.2307/2669946
[19] Dark, S. J. and Bram, D. (2007). The modifiable areal unit problem (MAUP) in physical geography. Progress in Physical Geography 31 471-479.
[20] Diggle, P. J. and Ribeiro, P. J. Jr. (2007). Model-Based Geostatistics . Springer, New York. · Zbl 1132.86002 · doi:10.1007/978-0-387-48536-2
[21] Diggle, P., Rowlingson, B. and Su, T.-l. (2005). Point process methodology for on-line spatio-temporal disease surveillance. Environmetrics 16 423-434. · doi:10.1002/env.712
[22] Diggle, P. J., Zheng, P. and Durr, P. (2005). Non-parametric estimation of spatial segregation in a multivariate point process. Applied Statistics 54 645-658. · Zbl 1490.62352 · doi:10.1111/j.1467-9876.2005.05373.x
[23] Diggle, P. J., Knorr-Held, L., Rowlingson, B., Su, T., Hawtin, P. and Bryant, T. (2003). Towards on-line spatial surveillance. In Monitoring the Health of Populations : Statistical Methods for Public Health Surveillance (R. Brookmeyer and D. Stroup, eds.). Oxford Univ. Press, Oxford.
[24] Diggle, P. J., Moraga, P., Rowlingson, B. and Taylor, B. M. (2013). Supplement to “Spatial and spatio-temporal log-Gaussian Cox processes: Extending the geostatistical paradigm.” . · Zbl 1331.86027 · doi:10.1214/13-STS441
[25] Donnelly, C. A., Woodroffe, R., Cox, D. R., Bourne, F. J., Cheesman, C. L., Clifton-Hadley, R. S., Wei, G., Gettinby, G., Gilks, P., Jenkins, H., Johnston, W. T., Le Fevre, A. M., McInery, J. P. and Morrison, W. I. (2006). Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 485 843-846.
[26] Finley, A. O., Sang, H., Banerjee, S. and Gelfand, A. E. (2009). Improving the performance of predictive process modeling for large datasets. Comput. Statist. Data Anal. 53 2873-2884. · Zbl 1453.62090
[27] Frigo, M. and Johnson, S. G. (2011). FFTW fastest Fourier transform in the west. Available at .
[28] Gamerman, D. (2010). Dynamic spatial models including spatial time series. In Handbook of Spatial Statistics (A. E. Gelfand, P. J. Diggle, M. Fuentes and P. Guttorp, eds.) 437-448. CRC Press, Boca Raton, FL. · doi:10.1201/9781420072884-c24
[29] Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo : Stochastic Simulation for Bayesian Inference , 2nd ed. Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1137.62011
[30] Gelfand, A. E. (2010). Misaligned spatial data: The change of support problem. In Handbook of Spatial Statistics (A. E. Gelfand, P. J. Diggle, M. Fuentes and P. Guttorp, eds.) 517-539. CRC Press, Boca Raton, FL. · doi:10.1201/9781420072884-c29
[31] Gelfand, A. E. (2012). Hierarchical modelling for spatial data problems. Spatial Statistics 1 30-39.
[32] Gelfand, A. E., Diggle, P. J., Fuentes, M. and Guttorp, P., eds. (2010). Handbook of Spatial Statistics . CRC Press, Boca Raton, FL. · Zbl 1188.62284 · doi:10.1201/9781420072884
[33] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern. Anal. Mach. Intell. 6 721-741. · Zbl 0573.62030 · doi:10.1109/TPAMI.1984.4767596
[34] Gerrard, D. J. (1969). Competition Quotient: A New Measure of the Competition Affecting Individual Forest Trees. Research Bulletin 20 . Agricultural Experiment Station, Michigan State Univ., East Lansing, MI.
[35] Geyer, C. (1999). Likelihood inference for spatial point processes: Likelihood and computation. In Stochastic Geometry ( Toulouse , 1996), (O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshout, eds.). Monogr. Statist. Appl. Probab. 80 79-140. Chapman & Hall/CRC, Boca Raton, FL.
[36] Gilks, W., Richardson, S. and Spiegelhalter, D. (1995). Markov Chain Monte Carlo in Practice . Chapman & Hall, London. · Zbl 0832.00018
[37] Girolami, M. and Calderhead, B. (2011). Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Stat. Soc. Ser. B Stat. Methodol. 73 123-214. · doi:10.1111/j.1467-9868.2010.00765.x
[38] Gneiting, T. (2002). Nonseparable, stationary covariance functions for space-time data. J. Amer. Statist. Assoc. 97 590-600. · Zbl 1073.62593 · doi:10.1198/016214502760047113
[39] Gneiting, T. and Guttorp, P. (2010a). Continuous parameter stochastic process theory. In Handbook of Spatial Statistics (A. E. Gelfand, P. J. Diggle, M. Fuentes and P. Guttorp, eds.) 17-28. CRC Press, Boca Raton, FL. · doi:10.1201/9781420072884-c2
[40] Gneiting, T. and Guttorp, P. (2010b). Continuous parameter spatio-temporal processes. In Handbook of Spatial Statistics (A. E. Gelfand, P. J. Diggle, M. Fuentes and P. Guttorp, eds.) 427-436. CRC Press, Boca Raton, FL. · doi:10.1201/9781420072884-c23
[41] Gotway, C. A. and Young, L. J. (2002). Combining incompatible spatial data. J. Amer. Statist. Assoc. 97 632-648. · Zbl 1073.62604 · doi:10.1198/016214502760047140
[42] Greenland, S. and Morgenstern, H. (1990). Ecological bias, confounding and effect modification. International Journal of Epidemiology 18 269-274.
[43] Haran, M. and Tierney, L. (2012). On automating Markov chain Monte Carlo for a class of spatial models. Available at .
[44] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 97-109. · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[45] Johnson, M. A., Smith, H., Joseph, P., Gilman, R. H., Bautista, C. T., Campos, K. J., Cespedes, M., Klatsky, P., Vidal, C., Terry, H., Calderon, M. M., Coral, C., Cabrera, L., Parmar, P. S. and Vinetz, J. M. (2004). Environmental exposure and leptospirosis, Peru. Emerging Infectious Diseases 10 1016-1022.
[46] Kelsall, J. and Wakefield, J. (2002). Modeling spatial variation in disease risk: A geostatistical approach. J. Amer. Statist. Assoc. 97 692-701. · Zbl 1073.62580 · doi:10.1198/016214502388618438
[47] Ko, A. I., Reis, M. G., Dourado, C. M. R., Johnson, W. D. Jr. and Riley, L. W. (1999). Urban epidemic of severe leptospirosis in Brazil. Salvador Leptospirosis Study Group. Lancet 354 820-825.
[48] Levett, P. N. (2001). Leptospirosis. Clininical Microbiology Reviews 14 296-326.
[49] Li, Y., Brown, P. E., Gesink, D. C. and Rue, H. (2012). Log Gaussian Cox processes and spatially aggregated disease incidence data. Stat. Methods Med. Res. 21 479-507.
[50] Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73 13-22. · Zbl 0595.62110 · doi:10.1093/biomet/73.1.13
[51] Lindgren, F., Rue, H. and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 73 423-498. · Zbl 1274.62360 · doi:10.1111/j.1467-9868.2011.00777.x
[52] López-Abente, G., Ramis, R., Pollán, M., Aragonés, N., Pérez-Gómez, B., Gómez-Barroso, D., Carrasco, J. M., Lope, V., García-Pérez, J., Boldo, E. and García-Mendizábal, M. J. (2006). ATLAS municipal de mortalidad por cáncer en España, 1989-1998. Instituto de Salud Carlos III, Madrid.
[53] Ma, C. (2003). Families of spatio-temporal stationary covariance models. J. Statist. Plann. Inference 116 489-501. · Zbl 1043.62051 · doi:10.1016/S0378-3758(02)00353-1
[54] Ma, C. (2008). Recent developments on the construction of spatio-temporal covariance models. Stoch. Environ. Res. Risk Assess. 22 39-47. · Zbl 1172.62325 · doi:10.1007/s00477-007-0154-x
[55] Mark, A. L. and Shepherd, D. H. (2004). NHS Direct: Managing demand for primary care? International Journal of Health Planning and Management 19 79-91.
[56] Matérn, B. (1960). Spatial Variation . Meddelanden fran Statens Skogsforskningsinstitut, Stockholm. Band 49, number 5. · Zbl 0608.62122
[57] McBride, A. J., Athanazio, D. A., Reis, M. G. and Ko, A. I. (2005). Leptospirosis. Current Opinions in Infectious Diseases 18 376-386.
[58] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21 1087-1092.
[59] Møller, J., Syversveen, A. R. and Waagepetersen, R. P. (1998). Log Gaussian Cox processes. Scand. J. Stat. 25 451-482. · Zbl 0931.60038 · doi:10.1111/1467-9469.00115
[60] Mugglin, A. S., Carlin, B. P. and Gelfand, A. E. (2000). Fully model-based approaches for spatially misaligned data. J. Amer. Statist. Assoc. 95 877-887.
[61] Piantadosi, S., Byar, D. P. and Green, S. B. (1988). The ecological fallacy. Am. J. Epidemiol. 127 893-904.
[62] R Core Team. (2013). R : A Language and Environment for Statistical Computing . Vienna, Austria.
[63] Ripley, B. D. (1976). The second-order analysis of stationary point processes. J. Appl. Probab. 13 255-266. · Zbl 0364.60087 · doi:10.2307/3212829
[64] Ripley, B. D. (1977). Modelling spatial patterns. J. R. Stat. Soc. Ser. B Stat. Methodol. 39 172-212. · Zbl 0369.60061
[65] Roberts, G. O. and Rosenthal, J. S. (2001). Optimal scaling for various Metropolis-Hastings algorithms. Statist. Sci. 16 351-367. · Zbl 1127.65305 · doi:10.1214/ss/1015346320
[66] Roberts, G. O. and Rosenthal, J. S. (2007). Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Probab. 44 458-475. · Zbl 1137.62015 · doi:10.1239/jap/1183667414
[67] Roberts, G. O. and Tweedie, R. L. (1996). Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2 341-363. · Zbl 0870.60027 · doi:10.2307/3318418
[68] Rodrigues, A. and Diggle, P. J. (2010). A class of convolution-based models for spatio-temporal processes with non-separable covariance structure. Scand. J. Stat. 37 553-567. · Zbl 1349.62449 · doi:10.1111/j.1467-9469.2009.00675.x
[69] Rue, H. and Held, L. (2005). Gaussian Markov Random Fields : Theory and Applications. Monographs on Statistics and Applied Probability 104 . Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1093.60003
[70] Rue, H., Martino, S. and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 319-392. · Zbl 1248.62156 · doi:10.1111/j.1467-9868.2008.00700.x
[71] Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis . Chapman & Hall, London. · Zbl 0617.62042
[72] Spiegelhalter, D. J., Thomas, A. and Best, N. G. (1999). WinBUGS Version 1.2 User Manual.
[73] Taylor, B. M. and Diggle, P. J. (2013a). INLA or MCMC? A tutorial and comparative evaluation for spatial prediction in log-Gaussian Cox processes. J. Stat. Comput. Simul. To appear. Preprint available at .
[74] Taylor, B. M. and Diggle, P. J. (2013b). Corrigendum: Spatiotemporal prediction for log-Gaussian Cox processes. J. R. Stat. Soc. Ser. B Stat. Methodol. 75 601-602. · doi:10.1111/rssb.12008
[75] Taylor, B. M., Davies, T. M., Rowlingson, B. S. and Diggle, P. J. (2013). lgcp: Inference with spatial and spatio-temporal log-Gaussian Cox processes in R. Journal of Statistical Software 52 Issue 4.
[76] Wall, M. M. (2004). A close look at the spatial structure implied by the CAR and SAR models. J. Statist. Plann. Inference 121 311-324. · Zbl 1036.62097 · doi:10.1016/S0378-3758(03)00111-3
[77] Wood, A. T. A. and Chan, G. (1994). Simulation of stationary Gaussian processes in \([0,1]^{d}\). J. Comput. Graph. Statist. 3 409-432.
[78] Woodroffe, R., Donnelly, C. A., Johnston, W. T., Bourne, F. J., Cheesman, C. L., Clifton-Hadley, R. S., Cox, D. R., Gettinby, G., Hewinson, R. G., Le Fevre, A. M., McInery, J. P. and Morrison, W. I. (2005). Spatial association of Mycobacterium bovis infection in cattle and badgers Meles meles. Journal of Applied Ecology 42 852-862.
[79] Zhang, H. (2004). Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J. Amer. Statist. Assoc. 99 250-261. · Zbl 1089.62538 · doi:10.1198/016214504000000241
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.