×

A modified Newton projection method for \(\ell _1\)-regularized least squares image deblurring. (English) Zbl 1331.68270

Summary: In recent years, \(\ell _1\)-regularized least squares have become a popular approach to image deblurring due to the edge-preserving property of the \(\ell _1\)-norm. In this paper, we consider the nonnegatively constrained quadratic program reformulation of the \(\ell _1\)-regularized least squares problem and we propose to solve it by an efficient modified Newton projection method only requiring matrix-vector operations. This approach favors nonnegative solutions without explicitly imposing any constraints in the \(\ell _1\)-regularized least squares problem. Experimental results on image deblurring test problems indicate that the developed approach performs well in comparison with state-of-the-art methods.

MSC:

68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

PDCO; NPtool; NESTA; SPGL1; TwIST
Full Text: DOI

References:

[1] Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19, 2345-2356 (2010) · Zbl 1371.94018 · doi:10.1109/TIP.2010.2047910
[2] Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Trans. Image Process. 20(3), 681-695 (2011) · Zbl 1372.94004 · doi:10.1109/TIP.2010.2076294
[3] Andrew, G., Gao, J.F.: Scalable training of l1-regularized log-linear models. In: Proceedings of the 24th International Conference on Machine Learning (2007) · Zbl 0919.94002
[4] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183-202 (2009) · Zbl 1175.94009 · doi:10.1137/080716542
[5] Becker, S., Bobin, J., Candès, E.J.: NESTA: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4, 1-39 (2011) · Zbl 1209.90265 · doi:10.1137/090756855
[6] Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. IOP Publishing, Bristol (1998) · Zbl 0914.65060 · doi:10.1887/0750304359
[7] Bertsekas, D.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982) · Zbl 0572.90067
[8] Bertsekas, D.: Projected Newton methods for optimization problem with simple constraints. SIAM J. Control Optim. 20(2), 221-245 (1982) · Zbl 0507.49018 · doi:10.1137/0320018
[9] Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999) · Zbl 1015.90077
[10] Bioucas-Dias, J., Figueiredo, M.: A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16(12), 29923004 (2007) · doi:10.1109/TIP.2007.909319
[11] Bloomfield, P., Steiger, W.: Least Absolute Deviations: Theory, Applications, and Algorithms. Progress in Probability and Statistics. Birkhäuser, Boston (1983) · Zbl 0536.62049
[12] Bonettini, S., Landi, G., Loli Piccolomini, E., Zanni, L.: Scaling techniques for gradient projection-type methods in astronomical image deblurring. Int. J. Comput. Math. 90(1), 9-29 (2013) · Zbl 1278.68326 · doi:10.1080/00207160.2012.716513
[13] Cai, Y., Sun, Y., Cheng, Y., Li, J., Goodison, S.: Fast implementation of l1 regularized learning algorithms using gradient descent methods. In: Proceedings of the 10th SIAM International Conference on Data Mining (SDM), pp. 862-871 (2010) · Zbl 1005.65058
[14] Candès, E., Romberg, J.: Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math. 6, 227-254 (2006) · Zbl 1102.94020 · doi:10.1007/s10208-004-0162-x
[15] Candès, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Invest. Probl. 23, 969-985 (2007) · Zbl 1120.94005 · doi:10.1088/0266-5611/23/3/008
[16] Candès, E., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406-5425 (2006) · Zbl 1309.94033 · doi:10.1109/TIT.2006.885507
[17] Candès, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 12071223 (2005) · Zbl 1098.94009
[18] Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489509 (2006) · Zbl 1231.94017 · doi:10.1109/TIT.2005.862083
[19] Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33-61 (1998) · Zbl 0919.94002 · doi:10.1137/S1064827596304010
[20] Daubechies, I., De Friese, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 14131457 (2004) · Zbl 1077.65055 · doi:10.1002/cpa.20042
[21] Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 12891306 (2006) · Zbl 1288.94016 · doi:10.1109/TIT.2006.871582
[22] Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1, 586-597 (2007) · doi:10.1109/JSTSP.2007.910281
[23] Fu, H., Ng, M.K., Nikolova, M., Barlow, J.L.: Efficient minimization methods of mixed l2-l1 and l1-l1 norms for image restoration. SIAM J. Sci. Comput. 27(6), 1881-1902 (2006) · Zbl 1103.65044 · doi:10.1137/040615079
[24] Gafni, E.M., Bertsekas, D.P.: Two-metric projection methods for constrained optimization. SIAM J. Control. Optim. 22, 936-964 (1984) · Zbl 0555.90086 · doi:10.1137/0322061
[25] Goldstein, T., Osher, S.: The split Bregman method for l1 regularized problems. SIAM J. Imag. Sci. 2(2), 323-343 (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[26] Goldstein, T., Setzer, S.: High-order methods for basis pursuit. Technical Report CAM report 10-41, UCLA (2010) · Zbl 1018.49025
[27] Gong, P., Zhang, C.: A fast dual projected Newton method for l1-regularized least squares. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI’11, vol. 2, pp. 1275-1280 (2011) · Zbl 1278.68326
[28] Guerquin-Kern, M., Baritaux, J.-C., Unser, M.: Efficient image reconstruction under sparsity constraints with application to MRI and bioluminescence tomography. In ICASSP, IEEE, pp. 5760-5763 (2011)
[29] Guo, X., Li, F., Ng, M.K.: A fast l1-TV algorithm for image restoration. SIAM J. Sci. Comput. 31(3), 2322-2341 (2009) · Zbl 1191.65029 · doi:10.1137/080724435
[30] Hager, W.W., Phan, D.T., Zhang, H.: Gradient-based methods for sparse recovery. SIAM J. Imaging Sci. 4(1), 146-165 (2011) · Zbl 1209.90266 · doi:10.1137/090775063
[31] Hale, E.T., Yin, W., Zhang, Y.: A fixed-point continuation method for l1-regularized minimization with applications to compressed sensing. Technical Report CAAM TR07-07, Rice University, Houston, TX (2007)
[32] Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for l1-minimization: methodology and convergence. SIAM J. Optim. 19, 1107-1130 (2008) · Zbl 1180.65076 · doi:10.1137/070698920
[33] Hansen, P.C., Nagy, J., O’Leary, D.P.: Deblurring Images. Matrices, Spectra and Filtering. SIAM, Philadelphia (2006) · Zbl 1112.68127 · doi:10.1137/1.9780898718874
[34] Kim, J., Park, H.: Fast active-set-type algorithms for l1-regularized linear regression. In: Proceedings of the AISTAT, pp. 397-404 (2010) · Zbl 1193.49033
[35] Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method for large-scale l1-regularized least squares. IEEE J. Sel. Top. Signal Process. 1, 606-617 (2007) · doi:10.1109/JSTSP.2007.910971
[36] Kuo, S.-S., Mammone, R.J.: Image restoration by convex projections using adaptive constraints and the l1 norm. Trans. Sig. Proc. 40(1), 159 (1992) · doi:10.1109/78.157191
[37] Landi, G., Loli Piccolomini, E.: Quasi-Newton projection methods and the discrepancy principle in image restoration. Appl. Math. Comput. 218(5), 2091-2107 (2011) · Zbl 1269.65053 · doi:10.1016/j.amc.2011.07.026
[38] Landi, G., Loli Piccolomini, E.: An efficient method for nonnegatively constrained total variation-based denoising of medical images corrupted by poisson noise. Comput. Med. Imaging Graph. 36(1), 38-46 (2012) · doi:10.1016/j.compmedimag.2011.07.002
[39] Landi, G., Loli Piccolomini, E.: An improved Newton projection method for nonnegative deblurring of Poisson-corrupted images with Tikhonov regularization. Numer. Algorithms 60(1), 169-188 (2012) · Zbl 1241.65059 · doi:10.1007/s11075-011-9517-y
[40] Landi, G., Loli Piccolomini, E.: NPTool: a Matlab software for nonnegative image restoration with Newton projection methods. Numer. Algorithms 62(3), 487-504 (2013) · Zbl 1262.65033 · doi:10.1007/s11075-012-9602-x
[41] Lavrentiev, M.M.: Some Improperly Posed Problems of Mathematical Physics. Springer, New York (1967) · Zbl 0149.41902 · doi:10.1007/978-3-642-88210-4
[42] Loris, I., Bertero, M., De Mol, C., Zanella, R., Zanni, L.: Accelerating gradient projection methods for l1-constrained signal recovery by steplength selection rules. Appl. Comput. Harmon. Anal. 27(2), 247-254 (2009) · Zbl 1170.65318 · doi:10.1016/j.acha.2009.02.003
[43] Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J. Numer. Anal. 40, 965994 (2002) · Zbl 1018.49025 · doi:10.1137/S0036142901389165
[44] Schmidt, M.: Graphical model structure learning with L1-regularization. Ph.D. thesis, University of British Columbia (2010)
[45] Schmidt, M., Fung, G., Rosalesm, R.: Fast optimization methods for l1 regularization: a comparative study and two new approaches. In: Proceedings of the 18th European Conference on Machine Learning, ECML ’07, Springer, pp. 286-297 (2007) · Zbl 1288.65090
[46] Schmidt, M., Fung, G., Rosales, R.: Optimization methods for l1-regularization. Technical Report TR-2009-19, UBC (2009) · Zbl 0507.49018
[47] Schmidt, M., Kim, D., Sra, S.: Optimization for Machine Learning. Projected Newton-type Methods in Machine Learning. MIT Press, Cambridge (2011)
[48] Tautenhahn, U.: On the method of Lavrentiev regularization for nonlinear illposed problems. Invest. Probl. 18, 191-207 (2002) · Zbl 1005.65058 · doi:10.1088/0266-5611/18/1/313
[49] Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58(1), 267288 (1996) · Zbl 0850.62538
[50] Tropp, J.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52(3), 10301051 (2006) · Zbl 1288.94025 · doi:10.1109/TIT.2005.864420
[51] Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, New York (1977) · Zbl 0354.65028
[52] Tibshirani, R., Hastie, T., Friedman, J.: The Elements of Statistical Learning. Springer Series in Statistics. Springer, New York (2001) · Zbl 0973.62007
[53] van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31, 890-912 (2008) · Zbl 1193.49033 · doi:10.1137/080714488
[54] Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227-238 (1996) · Zbl 0847.65083 · doi:10.1137/0917016
[55] Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002) · Zbl 1008.65103 · doi:10.1137/1.9780898717570
[56] Wright, S., Nowak, R., Figueiredo, M.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 24792493 (2009) · Zbl 1391.94442 · doi:10.1109/TSP.2009.2016892
[57] Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1, 143-168 (2008) · Zbl 1203.90153 · doi:10.1137/070703983
[58] Zhang, J.J., Morini, B.: Solving regularized linear least-squares problems by alternating direction methods with applications to image restoration. ETNA 40, 356-372 (2013) · Zbl 1288.65090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.